라틴어 문장 검색

Namque si in tribus terminis singuli relinquantur, binarius semper intererit.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:14)
Namque si duos intermittas, ternarius differentiam continebit, si tres, quaternarius, si quattuor, quinarius aeque in continuis proportionibus atque disiunctis.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 3:2)
Quod si conversim ponantur, ut non eisdem differentiis eadem qualitas proportionis eveniat, geometrica talis proportionalitas, non arithmetica nominatur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 3:4)
Est autem proprium huius medietatis, quod, si in tribus terminis speculatio sit, compositis extremitatibus illa summa, quae inter extremitates est, non loco tantum verum etiam sit quantitate medietas.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:1)
Ponamus enim tres terminos huiusmodi iij v vij. Si igitur tres septies augeantur, in xxj numerum cadunt.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:4)
Recte igitur dictum est, in hac huiusmodi dispositione, quod continetur sub extremitatibus, minus esse illo numero, qui fit ex medietate, tantum, quantum differentiae in se multiplicatae restituunt.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:8)
Quartum vero proprium huiusmodi dispositionis notatur, quod antiquiores quoque habuere notissimum, quod in hac proportionalitate vel medietate in minoribus terminis maiores proportiones, in maioribus minores comparationes necesse est inveniri.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 6:1)
Namque in dispositione hac j ij iij minores termini sunt j et ij, maiores ij et iij. Et ij ad unum duplus est, tres vero ad ij sesqualter.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 6:2)
in minoribus enim terminis minores proportiones, in maioribus maior proportionis quantitas custoditur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 6:5)
Harum vero medietatum, id est arithmeticae atque armonicae, geometrica proportionalitas media esse notata est, quae vel in maioribus vel in minoribus terminis aequas numerorum qualitates in proportionalitate custodit.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 6:6)
Nunc vero quae hanc sequitur, geometrica medietas expediatur, quae sola vel maxime proportionalitas appellari potest propterea quod in eisdem proportionibus terminorum vel in maioribus vel in minoribus speculatio ponitur.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 1:1)
In his enim, quotlibet terminos sumpseris, explebunt geometricam medietatem, quemadmodum enim prior ad sequentem est, ita sequens ad alium, et rursus, si permixte facias, idem erit.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 1:3)
Si enim ponantur tres termini ij iiij et viij, quemadmodum sunt viij ad iiij ita quattuor ad duo. Atque hoc si convertas, quemadmodum sunt duo ad quattuor, ita erunt quattuor ad viij.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 1:4)
Vel si in quattuor terminis, ut sunt ij iiij viij xvj, quemadmodum est primus ad tertium, id est ij ad viij, sic erit secundus ad quartum, id est iiij ad xvj. Utraque enim proportio quadrupla est. Et conversim quemadmodum quartus est ad secundum, ita tertius notatur ad primum.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 4:1)
Differentiae duplae
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 6:1)

SEARCH

MENU NAVIGATION