라틴어 문장 검색

Jam vero quae in praecedentibus duabus Propositionibus demonstrata sunt, obtinent in particulis sese non contingentibus, idque licet intervalla particularum, diminuendo spatia per quae vires diffunduntur, diminuantur in infinitum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 20:8)
at particula e urgebit particulas oblique positas f & g oblique, & particulae illae f & g non sustinebunt pressionem illatam, nisi fulciantur a particulis ulterioribus h & k;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 4:2)
usus orationis particulas maioribus intervallis diligenter distinguit) ita ut singulae particulae cum R fere consentiant.
(마르쿠스 툴리우스 키케로, 투스쿨라눔의 대화, 머리말185)
Si Vis centripeta, ad singulas Sphaerae particulas tendens, decrescit in quadruplicata ratione distantiae a particulis, scribe PE^4 ÷ 2AS^3 pro V, dein [sqrt]2PS × LD pro PE, & fiet DN ut
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 91:2)
Quare temporum particulis in ea ratione sumptis, corpora amittent semper particulas motuum proportionales totis, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 16:5)
Gravitatio in singulas corporis particulas aequales est reciprocè ut quadratum distantiae locorum à particulis.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 32:2)
Quare excessus ille, qui est efficacia absoluta particularum in locis propriis, est pars quarta efficaciae particularum earundem in AEquatore.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 58:8)
Nam distantia particulae cujusque terrestris à plano QR, quo tempore particula illa à plano Eclipticae longissimè distat, in Tropico suo (ut ita dicam) consistens, diminuitur, per inclinationem planorum Eclipticae & AEquatoris ad invicem, in ratione Sinus complementi inclinationis ad Radium.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 8:2)
Nam (per motuum Legem tertiam) motus quem cylindrus GNOQ circa globum descriptus impingendo in Medii particulas amitteret, aequalis est motui quem imprimeret in easdem particulas.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 38:1)
Unde si circuli totius circumferentia NAn dividatur in particulas aequales Aa, tempus quo Sol percurrat particulam Aa, si circulus quiesceret, erit ad tempus quo percurrit eandem particulam, si circulus una cum Nodis circa centrum T revolvatur, reciprocè ut 9,0829032 ATq.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:11)
Nam cum motus singulis temporis particulis amissus sit ut velocitas, hoc est ut itineris confecti particula:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 3:1)
Nam resistentia oritur partim ex viribus centripetis vel centrifugis quibus particulae systematum se mutuo agitant, partim ex occursibus & reflexionibus particularum & partium majorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 8:1)
Velocitas igitur quacum a cylindro resiliunt, addita velocitati cylindri componet totam velocitatem duplo majorem quam velocitas cylindri, & propterea motus quem cylindrus ex reflexione particulae cujusque amittit, erit ad motum totum cylindri, ut particula duplicata ad cylindrum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 38:5)
Et simili argumento attractio planorum omnium EF, ef in Sphaera tota, hoc est attractio Sphaerae totius, est ut summa planorum omnium, seu Sphaera tota, ducta in pS distantiam corpusculi a centro Sphaerae. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 53:6)
Corporis RSTV particulae A, B trahant corpusculum aliquod Z viribus quae, si particulae aequantur inter se, sint ut distantiae AZ, BZ;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 15:1)

SEARCH

MENU NAVIGATION