라틴어 문장 검색

id est (ob proportionales AZ, ZY) ut rectangulum sub AZ & ZY, hoc est ut area AZYa.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 11:6)
& propterea summa omnium rectangulorum in circulo toto ad summam totidem maximorum, ut area circuli totius ad rectangulum sub circumferentia tota & radio;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 11:9)
49"'½ ut area NAZ ad circulum totum.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 11:20)
Et si punctum d tangit curvam NdGn, area curvilinea NdZ erit decrementum totum, quo tempore arcus totus NA percurritur;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:23)
& propterea excessus Sectoris NAT supra aream NdZ erit tempus illud totum.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:24)
Et quoniam motus Nodi tempore minore minor est in ratione temporis, debebit etiam area AaYZ diminui in eadem ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:25)
Sic enim rectangulum eZ in ZY erit ad aream AZYa ut decrementum temporis, quo arcus Aa percurritur, ad tempus totum, quo percurreretur si Nodus quiesceret:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:29)
Et si punctum e tangat curvam NeFn, area tota NeZ, quae summa est omnium decrementorum, respondebit decremento toti, quo tempore arcus AN percurritur;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:31)
& area reliqua NAe respondebit motui reliquo, qui verus est Nodi motus quo tempore arcus totus NA, per Solis & Nodi conjunctos motus, percurritur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:32)
Jam verò si circuli radius AT ponatur 1, erit area semicirculi 1,570796;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:33)
& area figurae NeFnT, per methodum Serierum infinitarum quaesita, prodibit 0,1188478.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:34)
In tempore quod est ut area NTA - NdZ, (in Fig.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 17:1)
) motus iste est ut area NAeN, & inde datur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 17:3)
ideoque IT × TG aequale Kk × Hp × TZ ÷ Mp, hoc est aequale areae HpMh ductae in rationem TZ ÷ Mp:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 24:5)
33^{iv}, ut aggregatum omnium arearum HpMh, in revolutione puncti p generatarum, & sub signis propriis + & - conjunctarum, ductum in AZ × TZ × Pp ÷ PG, ad Mp × AT cub.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 25:4)

SEARCH

MENU NAVIGATION