라틴어 문장 검색

& si ML designet spatium quod Luna in circulo revolvens, interea dum describit arcum PM, urgente & impellente vi praedicta 3IT, motu transverso describere posset, & ml designet spatium quod Luna in Ellipsi revolvens eodem tempore, urgente etiam vi 3IT, describere posset;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 5:2)
Sit autem Aa arcus datus quam minimus, quem recta TS ad Solem semper ducta, intersectione sua & circuli NAn, dato tempore quam minimo describit:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 11:4)
Est autem maxima AZYa aequalis rectangulo sub arcu Aa & radio circuli;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 11:8)
& propterea summa omnium rectangulorum in circulo toto ad summam totidem maximorum, ut area circuli totius ad rectangulum sub circumferentia tota & radio;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 11:9)
Unde si circuli totius circumferentia NAn dividatur in particulas aequales Aa, tempus quo Sol percurrat particulam Aa, si circulus quiesceret, erit ad tempus quo percurrit eandem particulam, si circulus una cum Nodis circa centrum T revolvatur, reciprocè ut 9,0829032 ATq.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:11)
rectangulum dZ in ZY designabit decrementum temporis ex motu Nodi oriundum, tempore toto quo arcus Aa percurritur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:22)
Et si punctum d tangit curvam NdGn, area curvilinea NdZ erit decrementum totum, quo tempore arcus totus NA percurritur;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:23)
Sic enim rectangulum eZ in ZY erit ad aream AZYa ut decrementum temporis, quo arcus Aa percurritur, ad tempus totum, quo percurreretur si Nodus quiesceret:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:29)
Et si punctum e tangat curvam NeFn, area tota NeZ, quae summa est omnium decrementorum, respondebit decremento toti, quo tempore arcus AN percurritur;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:31)
& area reliqua NAe respondebit motui reliquo, qui verus est Nodi motus quo tempore arcus totus NA, per Solis & Nodi conjunctos motus, percurritur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:32)
) ut tangens DG ad circuli BED circumferentiam totam, atque angulus iste ad motum medium Nodorum addatur;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 17:16)
hoc est ut circumferentia QAqa ducta in AZ × TZ × Pp ÷ PG ad 2MP × AT quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 25:6)
hoc est ut diameter ducta in Pp ÷ PG, ad circumferentiam;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 27:10)
Designet jam AEg distantiam Nodorum à Quadraturis post datum aliquod momentum temporis completum, & arcus Gg, ob datum angulum GEg, erit ut distantia GE.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 32:12)
Est autem Variatio tota, Sinuum differentiae BD respondens, ad variationem illam horariam ut diameter BD ad arcum Gg;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 33:11)

SEARCH

MENU NAVIGATION