라틴어 문장 검색

erit superficiei pars annularis, convolutione arcus rE genita, ut lineola Dd, manente Sphaerae radio PE, (uti demonstravit Archimedes in Lib.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 67:2)
Theorema vero sic demonstratur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 102:14)
Nominetur ista profunditas O, & erit haec superficies (per demonstrata Archimedis) ut PF × DF × O. Ponamus praeterea vires attractivas particularum Sphaerae esse reciproce ut distantiarum dignitas illa cujus Index est n;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 107:4)
Demonstratur eodem modo, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 20:1)
Data igitur vi corpus movebitur in Parabola, quemadmodum Galilaeus demonstravit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 56:7)
& primo si attractio vel impulsus ponatur uniformis, erit (ex demonstratis Galilaei) curva HI Parabola, cujus haec est proprietas, ut rectangulum sub dato latere recto & linea IM aequale sit HM quadrato;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 4:7)
& per jam demonstrata, sinus incidentiae in planum primum Aa erit ad sinum emergentiae ex plano secundo Bb, in data ratione;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 6:4)
inter plana Cc, Dd describendo arcum Parabolae QRq, cujus vertex principalis (juxta demonstrata Galilaei) est in R;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 13:10)
In Mediis autem quae rigore omni vacant (uti posthac demonstrabitur) corpora resistuntur in duplicata ratione velocitatum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 36:3)
Quo demonstrato, consequens est etiam ut areae his lineis descriptae sint in progressione consimili cum spatiis quae velocitatibus describuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 4:14)
Demonstratur vero Lemma in hunc modum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 25:13)
Positis jam demonstratis, dico quod si Tangentes angulorum sectoris Circularis & sectoris Hyperbolici sumantur velocitatibus proportionales, existente radio justae magnitudinis:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 47:1)
Nulla igitur Medii densitate movebitur Projectile in Parabola, uti olim demonstravit Galilaeus. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 75:7)
Demonstratur eadem methodo cum Propositione superiore.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 21:1)
Quae de gravitate demonstrantur, obtinent in aliis quibuscunque viribus centripetis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 24:2)

SEARCH

MENU NAVIGATION