라틴어 문장 검색

Quod in senario quoque convenit considerari.
(보이티우스, De Arithmetica, Liber secundus, De circularibus vel sphericis numeris 1:7)
Illi vero, qui sunt pares, quoniam binarii numeri formae sunt, quique ex his coacervati collectique in unam congeriem parte altera longiores numeri nascuntur, hi secundum ipsius binarii numeri naturam ab eiusdem substantiae natura discessisse dicuntur, putanturque alterius naturae esse participes idcirco, quoniam, cum latera tetragonorum ab aequalitate progressa in aequalitatempropriae latitudinis ambitum tendant, hi adiecto uno ab aequalitate laterum discesserunt atque ideo dissimilibus lateribus et quodammodo a se alteris coniunguntur.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:5)
Rursus si ponantur duo tetragoni ex superius descriptis, id est primus et secundus et in unum colligantur, et medius eorum parte altera longior his multiplicetur, tetragonus fit. Namque unus et iiij, si iungantur, v faciunt.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 30:2)
Illud vero, quod ex his duobus tota omnium formarum videtur orta prolatio, non minore consideratione notandum est. Namque trianguli, qui cunctas alias formas, sicut superius docuimus, collecti producunt, bis iunctis velut ex quibusdam elementis oriuntur.
(보이티우스, De Arithmetica, Liber secundus, Quod ex quadratis et parte altera longioribus omnis formarum ratio consistat 1:1)
tetragonos quoque ad eundem modum considerari manifestum est. Nam quod eorum compositio et coniunctio ex inparibus fit, inmutabili eos naturae pronuntiabo coniunctos.
(보이티우스, De Arithmetica, Liber secundus, Quod principaliter eiusdem quidem sit substantiae unitas, secundo vero loco inpares numeri, tertio quadrati, et quod principaliter dualitas alterius sit substantiae, secundo vero loco pares numeri, tertio parte altera longiores 1:3)
Sin vero quattuor contra duo compares, hic quoque dupla proportio est. Quos tres terminos si continue consideres, ex duabus proportionibus fit proportionalitas et est proportionalitas unum ad duo et duo ad quattuor.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:10)
Quod si medium terminum, id est v, in semet ipsum multiplicaveris, quinquies quinque faciunt xxv Et hic numerus ab eo, quem extremitates colligunt, quaternario maior est, quem scilicet differentiae conficiunt.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:5)
In his quoque eadem laterum ratio est. Namque exuno cybo, qui propinquior est, una medietas duo latera colligit, ex alternatim vero posito unum.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:17)
Et xviij eadem ratione duo latera a propinquo sibi xxvij cybo colligit et unum ab altrinsecus posito octonario.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:26)
Habet autem aliam proprietatem armonica medietas, ut cum duas extremitates in unum redactas medietas multiplicaverit, dupla quantitas colligatur, quam si se multiplicent duae extremitates.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:18)
Considerandum forsitan videatur, cur hanc armonicam medietatem vocemus.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 1:1)
Illa autem maxima symphonia, quae vocatur bis diapason velut bis duplum, quoniam diapason symphonia ex duplici proportione colligitur, huic se iuncturae armonicae medietatis interserit.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 9:1)
Qua vero disciplina huiusmodi medietates repperire possimus expediendum est. Datis duobus terminis si arithmeticam medietatem constituere oportebit, utraque est extremitas coniungenda quodque ex ea copulatione colligitur dividendum, isque numerus, qui ex divisioneredactus est, arithmeticam medietatem inter extremitates locatus efficiet;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:1)
Differentiam terminorum in minorem terminum multiplica et post iunge terminos, et iuxta eum, qui inde confectus est, committe illum numerum, qui ex differentiis et termino minore productus est, cuius cum latitudinem inveneris, addis eam minori termino, et quod exinde colligitur, medium terminum pones.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:17)
Quarta vero, quae in ordine decima est, consideratur in tribus terminis, cum tali proportione medius terminus ad parvissimum comparatur, quali extremorum differentia contra maiorum terminorum differentiam proportione coniungitur, ut sunt iij v viij.
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:12)

SEARCH

MENU NAVIGATION