라틴어 문장 검색

spatium AC, quod corpus de loco A perpendiculariter cadendo tempore dato describit, si modo tempori proportionalis capiatur area ABD, & a puncto D ad rectam AB demittatur perpendicularis DC. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 4:11)
Sin figura superior RPB Hyperbola est, describatur ad eandem diametrum principalem AB Hyperbola rectangula BD:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 6:2)
Proinde area BDEB proportionalis erit tempori quo corpus C recto descensu describit lineam CB. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 6:6)
Et simili argumento si figura RPB Parabola est, & eodem vertice principali B describatur alia Parabola BED, quae semper maneat data, interea dum Parabola prior in cujus perimetro corpus P movetur, diminuto & in nihilum redacto ejus Latere recto, conveniat cum linea CB, fiet segmentum Parabolicum BDEB proportionale tempori quo corpus illud P vel C descendet ad centrum B. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 7:2)
Positis jam inventis, dico quod corporis cadentis velocitas in loco quovis C est ad velocitatem corporis centro B intervallo BC circulum describentis, in dimidiata ratione quam CA, distantia corporis a Circuli vel Hyperbolae vertice ulteriore A, habet ad figurae semidiametrum principalem ½AB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 9:1)
quod corporis in linea RPB circa centrum S moventis velocitas in loco quovis P sit ad velocitatem corporis intervallo SP circa idem centrum circulum describentis in dimidiata ratione rectanguli ½L × SP ad SY quadratum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 11:9)
& corporis jam recta descendentis in linea CB velocitas fiet ad velocitatem corporis centro B interuallo BC circulum describentis, in dimidiata ratione ipsius BQq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 11:22)
Si figura BED Parabola est, dico quod corporis cadentis velocitas in loco quovis C aequalis est velocitati qua corpus centro B dimidio intervalli sui BC circulum uniformiter describere potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 14:1)
Nam corporis Parabolam RPB circa centrum S describentis velocitas in loco quovis S (per Corol. 7.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 16:1)
VIII) aequalis est velocitati corporis dimidio intervalli SP circulum circa idem S uniformiter describentis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 16:3)
Ergo AC est ad AO, id est ad SK, ut CD × Cc ad SY × Dd. Porro corporis descendentis velocitas in C est ad velocitatem corporis circulum intervallo SC circa centrum S describentis in dimidiata ratione AC ad AO vel SK (per Theor. IX.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 21:5)
) Et haec velocitas ad velocitatem corporis describentis circulum OKk in dimidiata ratione SK ad SC per Cor. 6.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 21:6)
Super diametro AS (distantia corporis a centro sub initio) describe semicirculum ADS, ut & huic aequalem semicirculum OKH circa centrum S. De corporis loco quovis C erige ordinatim applicatam CD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 27:1)
Si ratio illa est numeri binarii ad unitatem, punctum A cadet ad infinitam distantiam, quo in casu Parabola uertice S, axe SC, latere quovis recto describenda est.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 31:3)
Patet hoc per Theorema X. Sin ratio illa minor vel major est quam 2 ad 1, priore casu Circulus, posteriore Hyperbola rectangula super diametro SA describi debet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 31:4)

SEARCH

MENU NAVIGATION