라틴어 문장 검색

dividantur, & partes illae, ubi numerus earum augetur & magnitudo diminuitur in infinitum, datam obtineant rationem ad invicem, prima ad primam, secunda ad secundam caeteraeq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 19:4)
erunt tota ad invicem in eadem illa data ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 19:6)
dein puncta A, B ad invicem accendant & coeant;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 24:3)
Iisdem positis, dico quod ultima ratio arcus, chordae & tangentis ad invicem est ratio aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 27:1)
& arcus AB ad invicem erit ratio aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 31:3)
Et propterea hae omnes lineae in omni de rationibus ultimis argumentatione pro se invicem usurpari possunt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 32:2)
Si rectae datae AR, BR cum arcu AB, chorda AB & tangente AD, triangula tria ARB, ARB, ARD constituunt, dein puncta A, B accedunt ad invicem:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 35:1)
Unde & hisce semper similia & proportionalia RAB, RAB, RAD fient ultimo sibi invicem similia & aequalia. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 36:4)
Et hinc triangula illa in omni de rationibus ultimis argumentatione pro se invicem usurpari possunt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 37:2)
dico quod areae triangulorum ADB, AEC erunt ultimo ad invicem in duplicata ratione laterum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 40:3)
J intersectio linearum BG, AG ultimo facta ubi puncta D, B accedunt usq; ad A. Manifestum est quod distantia GJ minor esse potest quam assignata quaevis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 50:5)
Et quamvis angulus D non detur, tamen anguli D, d ad aequalitatem semper vergent & propius accedent ad invicem quam pro differentia quavis assignata, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 52:2)
ultimo aequales erunt, per Lem. I. & propterea lineae BD, bd in eadem ratione ad invicem ac prius. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 52:3)
Et rursus inter binos quosvis angulos hujus seriei inseri potest series nova angulorum intermediorum ab invicem infinitis intervallis differentium. Neq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 57:13)
adeo hae sunt ad invicem in ratione prima spatiorum nascentium CD, cd:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 25:3)

SEARCH

MENU NAVIGATION