살아있는 라틴어
왜 라틴어인가
생활 속 라틴어
해리포터 속 라틴어
고대 라틴어
고전 라틴어
알파벳과 발음
문법 요소
명사 변화(곡용)
격의 용법
동사 변화(활용)
시제와 시상
달력과 날짜 표기
접속법의 용법
조건절의 사용
후기 라틴어
중세 라틴어
르네상스 라틴어
신 라틴어
위키
공지사항
라틴어 명언들
주제별 분류
출처별 분류
드립 모음
도구
통합검색
사전
라틴어-한국어 사전
한국어-라틴어 사전
라틴어 단어 색인
사전 보는 법
문장 검색
로마 숫자 변환기
로마 달력 변환기
라틴어 발음 변환기
발음 표기법 일람
언어탐지기
문법 용어 정리
입력기
라틴어 사이트 검색
분석기
라틴어 텍스트
전체 색인
Oxford Latin Course
Part I
Part II
Part III
가톨릭 기도문
주님의 기도
성모송
대영광송
소영광송
노래
인터내셔널가
성경
본문
카이사르
갈리아 전기
내란기
불확실 저서
호라티우스
첫번째 편지
두번째 편지
풍자
푸블릴리우스
격언집
아카이브
라틴어 Q&A
링크
살아있는 헬라어
ILAB
도구
도구
문장 검색
도구
- 통합검색
사전
- 라틴어-한국어 사전
- 한국어-라틴어 사전
- 라틴어 단어 색인
- 사전 보는 법
- 문장 검색
- 로마 숫자 변환기
- 로마 달력 변환기
라틴어 발음 변환기
- 발음 표기법 일람
- 언어탐지기
- 문법 용어 정리
- 입력기
- 라틴어 사이트 검색
- 분석기
도구
통합검색
사전
라틴어-한국어 사전
한국어-라틴어 사전
라틴어 단어 색인
사전 보는 법
문장 검색
로마 숫자 변환기
로마 달력 변환기
라틴어 발음 변환기
발음 표기법 일람
언어탐지기
문법 용어 정리
입력기
라틴어 사이트 검색
분석기
라틴어 문장 검색
라틴어 형태로 검색
라틴어 기본형으로 검색
한국어로 검색
[epsilon], [phi], [gamma] loca quaevis intermedia eorundem
punctorum
;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:6)
& EF, FG lineolas Physicas seu Medii partes lineares
punctis
illis interjectas, & successive translatas in loca [epsilon][phi], [phi][gamma] & ef, fg.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:7)
sic ut completo tempore quovis PH vel PHSh, si demittatur ad PS perpendiculum HL vel hl, & capiatur Ee aequalis PL vel Pl,
punctum
Physicum E reperiatur in [epsilon].
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:11)
Hac lege
punctum
quodvis E eundo ab E per [epsilon] ad e, & inde redeundo per [epsilon] ad E iisdem accelerationis ac retardationis gradibus, vibrationes singulas peraget cum oscillante Pendulo.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:12)
Probandum est quod singula Medii
puncta
Physica tali motu agitari debeant.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:13)
Unde [epsilon][gamma] in itu
punctorum
aequalis erit EG - LN, in reditu autem aequalis EG + ln.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:5)
Unde si OP × BC ÷ Z dicatur V, erit expansio partis EG,
punctive
Physici F, ad ejus expansionem mediocrem in itu, ut V - IM ad V, in reditu ut V + im ad V;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:10)
in reditu, ut 1 ÷ {V + im} ad 1 ÷ V. Et eodem argumento vires Elasticae
punctorum
Physicorum E & G in itu, sunt ut 1 ÷ {V - HL} & 1 ÷ {V - KN} ad 1 ÷ V;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:12)
Et eodem argumento differentia virium Elasticarum
punctorum
Physicorum [epsilon] & [gamma], in reditu lineolae Physicae [epsilon][gamma] est ut [Omega][phi].
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 46:3)
Constitui autem intelligatur Pendulum, cujus longitudo inter
punctum
suspensionis & centrum oscillationis sit A:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 50:2)
foret tempus vibrationis unius ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione longitudinis ½PS seu PO ad longitudinem A. Sed vis Elastica qua lineola Physica EG, in locis suis extremis P, S existens, urgetur, erat (in demonstratione Propositionis superioris) ad ejus vim totam Elasticam ut HL - KN ad V, hoc est (cum
punctum
K jam incidat in P) ut HK ad V:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:5)
Si Cylindrus solidus infinitè longus in fluido uniformi & infinito circa axem
positione
datum uniformi cum motu revolvatur, & ab hujus impulsu solo agatur Fluidum in Orbem, perseveret autem fluidi pars unaquaeque uniformiter in motu suo;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 4:1)
Si Sphaera solida, in fluido uniformi & infinito, circa axem
positione
datum uniformi cum motu revolvatur, & ab hujus impulsu solo agatur fluidum in orbem;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 15:1)
Si globus in fluido quiescente similari & infinito circa axem
positione
datum uniformi cum motu revolvatur, communicabitur motus fluido in morem Vorticis, & motus iste paulatim propagabitur in infinitum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 20:2)
Et eadem ratione qua hujus globus raperetur motu vorticis alterius, raperetur etiam globus alterius motu hujus, sic ut globi duo circa intermedium aliquod
punctum
revolverentur, seque mutuò ob motum illum circularem fugerent, nisi per vim aliquam cohibiti.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 23:5)
이전
38
/
54
페이지
다음
LOGIN
로그인
회원가입
SEARCH
MENU NAVIGATION
살아있는 라틴어
왜 라틴어인가
생활 속 라틴어
해리포터 속 라틴어
고대 라틴어
고전 라틴어
알파벳과 발음
문법 요소
명사 변화(곡용)
격의 용법
동사 변화(활용)
시제와 시상
달력과 날짜 표기
접속법의 용법
조건절의 사용
후기 라틴어
중세 라틴어
르네상스 라틴어
신 라틴어
위키
공지사항
라틴어 명언들
주제별 분류
출처별 분류
드립 모음
도구
통합검색
사전
라틴어-한국어 사전
한국어-라틴어 사전
라틴어 단어 색인
사전 보는 법
문장 검색
로마 숫자 변환기
로마 달력 변환기
라틴어 발음 변환기
발음 표기법 일람
언어탐지기
문법 용어 정리
입력기
라틴어 사이트 검색
분석기
라틴어 텍스트
전체 색인
Oxford Latin Course
Part I
Part II
Part III
가톨릭 기도문
주님의 기도
성모송
대영광송
소영광송
노래
인터내셔널가
성경
본문
카이사르
갈리아 전기
내란기
불확실 저서
호라티우스
첫번째 편지
두번째 편지
풍자
푸블릴리우스
격언집
코퍼스 보기
아카이브
라틴어 Q&A
링크
살아있는 헬라어
ILAB
라틴어 보기 모드
X
장음표시 사용