라틴어 문장 검색

Igitur si longitudo aliqua V sumatur in ea ratione ad arcum ET, quam habet linea DA ad lineam DE;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 35:2)
et signandum dextra sinistra, ubi sunt litterae G H. deinde ab his lineae usque ad lineam planitiae perducendae sunt, ubi erunt litterae I K. ita erit solis radius unus hibernus, alter aestivus.
(비트루비우스 폴리오, 건축술에 관하여, LIBER NONUS, 7장15)
Est igitur punctum primi intervalli principium, non tamen intervallum, et lineae caput, sed nondum linea, sicut linea quoque superficieiprincipium est, sed ipsa superficies non est, et secundi intervalli caput est, secundum tamen intervallum ipsa non retinet.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:42)
& linea Zt producta abscindet lineam QT densitati proportionalem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 32:4)
dico quod si distantia arcuum EF, ef in infinitum minui intelligatur, ratio ultima lineae evanescentis Dd ad lineam evanescentem Ff ea sit, quae lineae PE ad lineam PS.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 62:5)
moventur uniformiter in lineis rectis, commune centrum gravitatis duorum quorumvis, vel quiescit vel progreditur uniformiter in linea recta, propterea quod linea horum corporum centra in rectis uniformiter progredientia jungens, dividitur ab hoc centro communi in ratione data:
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 27:3)
, tempus quo corpus describit arcum ST est ad tempus oscillationis unius, ut arcus HI (tempus quo corpus H perveniet ad L) ad semicirculum HKM (tempus quo corpus H perveniet ad M.) Et velocitas corporis penduli in loco T est ad velocitatem ipsius in loco infimo R, (hoc est velocitas corporis H in loco L ad velocitatem ejus in loco G, seu incrementum momentaneum lineae HL ad incrementum momentaneum lineae HG, arcubus HI, HK aequabili fluxu crescentibus) ut ordinatim applicata LI ad radium GK, sive ut [sqrt]{SRq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:12)
Dantur positione tres rectae infinitae AB, AC, BC, & oportet triangulum DEF ita locare, ut angulus ejus D lineam AB, angulus E lineam AC, & angulus F lineam BC tangat.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 108:1)
) duplex erit, altera lineae 2IT vel 2Kp, altera lineae PI proportionalis.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 50:7)
deinde per decusationem et centrum, ubi est A, perducatur linea ad extremum, in qua linea erunt litterae E et F. haec linea erit index meridianae et septentrionalis regionis.
(비트루비우스 폴리오, 건축술에 관하여, LIBER PRIMUS, 6장53)
& area quam linea Cp describit erit ad aream VCP quam linea CP describit, ut velocitas lineae describentis Cp ad velocitatem lineae describentis CP;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 3:3)
Est igitur decrementum lineae VP, id est incrementum lineae BV - VP, ad incrementum lineae curvae AP in data ratione CB ad 2CE, & propterea (per Corol. Lem. IV.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 16:8)
Nam si in constructionibus Problematis superioris accedat punctum A ad punctum B, lineae CA & CB coincident, & linea AB in ultimo suo situ fiet tangens BH, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 56:1)
actione describat lineam curvam HI, & emergat secundum lineam IK.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 4:4)
& lineae DF qua AD augetur, ad lineam DG qua DB diminuitur, ratio ultima erit eadem quae sinus incidentiae ad sinum emergentiae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 20:7)

SEARCH

MENU NAVIGATION