라틴어 문장 검색

Superparticularium quoque infinita est multitudo ob eam rem, quod eiusdem species interminabili progressione funguntur.
(보이티우스, De Arithmetica, Liber primus, De superparticulari eiusque speciebus earumque generationibus. 1:6)
Dicendum vero est, si quis secundam speciem superparticularis numeri considerare desideret, id est sesquitertiam, quali ratione repperiet.
(보이티우스, De Arithmetica, Liber primus, De superparticulari eiusque speciebus earumque generationibus. 6:1)
Sic enim cognoscemus, quemadmodum superparticulari et superpartienti et cunctis aliis princeps erit species multiplicis et quaedam alia simul inspiciemus et ad subtilitatem tenuissima et ad scientiam utilissima et ad exercitationem iucundissima.
(보이티우스, De Arithmetica, Liber primus, Descriptio, per quam docetur ceteris inaequalitatis speciebus antiquiorem esse multiplicitatem. 1:3)
Si igitur duo prima latera propositae formulae, quae faciunt angulum ab uno ad x et x procedentia, respiciantur et his subteriores ordines comparentur, qui scilicet a iiij angulum incipientes in vicenos terminum ponunt, duplex, id est prima species multiplicitatis ostenditur ita, ut primus primum sola superet unitate, ut duo unum, secundus secundum binario supervadat, ut quaternarius binarium, tertius tertium tribus, ut senarius ternarium, quartus quartum quaternarii numerositate transcendat, ut viij quaternarium, et per eandem cuncti sequentiam sese minoris pluralitate praetereant.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:1)
Si vero tertius angulus aspiciatur, qui ab viiij inchoans longitudinem latitudinemque tricenis altrinsecus numeris extendit, et hic cum prima latitudine et longitudine comparetur, triplex species multiplicitatis occurrit ita, ut ista comparatio per x litteram fiat, hique se numeri superabunt secundum paritatis factam naturaliter connexionem.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:2)
Et si quis subteriores aspiciat angulos, idem per omnes multiplicitatis species usque ad decuplum dispositissima ordinatione perveniet.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:6)
Si quis vero in hac descriptione superparticularis species requirat, tali modo repperiet.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:7)
Praeterea eos, qui sub ipsis sunt, si idem faciens sequentes versus alterutris comparaveris, omnes sine ullo inpedimento species superparticularis agnosces.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:14)
Igitur post duas primas habitudines multiplices et superparticulares et eas, quae sub ipsis sunt, submultiplices et subsuperparticulares tertia inaequalitatis species invenitur, quae a nobis superius superpartiens dicta est. Haec autem est, quae fit, cum numerus ad alium comparatus habet eum totum intra se et eius insuper aliquas partes, vel duas vel tres vel iiij vel quotquot ipsa tulerit comparatio;
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 1:1)
habet enim quinarius totos in se tres et eorum duas partes id est duo. Si vero ad secundum ordinem speculatio referatur, supertripartiens proportio cognoscetur atque ita in sequentibus per omnes dispositos numeros omnes in infinitum species huius numeri convenientes ordinatasque respicies.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 5:2)
et ceterae species una semper plus multiplicatione crescentibus radicibus oriuntur.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:7)
Igitur relatae ad aliquid quantitatis simplices et primae species hae sunt.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:1)
Itaque ex utroque nomine ficto vocabulo est speciesque eius ad illarum scilicet fiunt imaginem proportionum, ex quibus ipse numerus originem trahit.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:7)
et quotiens totum numerum in semet ipso continuerit per multiplicis numeri species appellabitur, quam vero partem comparati numeri clauserit, secundum superparticularem comparationem habitudinemque vocabitur.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:12)
Ea vero species huius numeri, quae est triplex sesqualtera, hoc modo procreatur, si disponantur a binario numero omnes in ordinem pares et ad eos a septenario numero inchoantes septenario sese supergredientes solito ad alterutrum comparationis modo aptentur.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 14:1)

SEARCH

MENU NAVIGATION