라틴어 문장 검색

Si Medii densitas in locis singulis sit reciproce ut distantia locorum a centro immobili, sitque vis centripeta in duplicata ratione densitatis:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 7:1)
In Medio igitur cujus densitas est reciproce ut distantia a centro SP, corpus gyrari potest in hac Spirali. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:25)
Velocitas in loco quovis P ea semper est quacum corpus in Medio non resistente gyrari potest in circulo, ad eandem a centro distantiam SP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 9:2)
Et quoniam in aequalibus a centro distantiis velocitas eadem est in Spirali PQR atque in recta SP, & longitudo Spiralis ad longitudinem rectae PS est in data ratione, nempe in ratione OP ad OS;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 13:2)
Nam si vis centripeta in P sit reciproce ut distantiae SP dignitas quaelibet SP^{n + 1} cujus index est n + 1;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 21:2)
Nam si pars aliqua D moveatur, necesse est ut omnes ejusmodi partes, ad eandem a centro distantiam undique consistentes, simili motu simul moveantur; atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 6:4)
Non possunt servata sua a centro distantia moveri in plagam quamcunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 6:10)
Si Fluidi Sphaerici, & in aequalibus a centro distantiis homogenei, fundo sphaerico concentrico incumbentis partes singulae versus centrum totius gravitent;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 15:1)
Sustinet ergo superficies infima pondus cylindri praefiniti. Q. E. D. Et simili argumentatione patet Propositio, ubi gravitas decrescit in ratione quavis assignata distantiae a centro, ut & ubi Fluidum sursum rarius est, deorsum densius. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 17:12)
In aequalibus autem a centro distantiis eadem semper est pressionis quantitas, sive superficies pressa sit Horizonti parallela vel perpendicularis vel obliqua;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 19:2)
Hisce circumstantiis pressionem nil mutari colligitur, applicando demonstrationem Theorematis hujus ad Casus singulos Fluidorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 19:4)
Sit Fluidi cujusdam densitas compressioni proportionalis, & partes ejus a vi centripeta distantiis suis a centro reciproce proportionali deorsum trahantur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 28:1)
distantias continue proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 30:2)
Pergatur per saltum, & (ex aequo) in distantiis SA, SC, SE continue proportionalibus, erunt densitates AH, CK, EM continue proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 30:25)
Et eodem argumento in distantiis quibusvis continue proportionalibus SA, SD, SQ densitates AH, DL, QT erunt continue proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 30:26)

SEARCH

MENU NAVIGATION