라틴어 문장 검색

At Quies vera est permansio corporis in eadem parte spatii illius immoti in qua Navis ipsa una cum cavitate sua & contentis universis movetur.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 정의 33:5)
figurae lateri Aa parallelis contenta;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 6:5)
dico quod angulus BAD sub chorda & tangente contentus minuetur in infinitum & ultimo evanescet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 24:4)
superficiebus comprehensis demonstrata sunt, facile applicantur ad solidorum superficies curvas & contenta.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 58:2)
Figurae quadrilaterae sub quatuor quibusvis contentae ABFE diagonales AF, BE biseca, & (per Cor. 3. Lem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 98:2)
Rursus figurae quadrilaterae BGDF, sub alijs quibusvis quatuor tangentibus contentae, diagonales (ut ita dicam) BD, GF biseca, & recta per puncta bisectionum acta transibit per centrum sectionis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 98:4)
) ut latus quadratum rectanguli BEC contenti sub semidiametro Rotae, qua Cyclois descripta fuit, & differentia inter semidiametrum illam & semidiametrum globi. Q. E. I. Est & idem tempus (per Corol. Prop. L.) in dimidiata ratione longitudinis fili AR. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 35:13)
Attractiones vero motrices, seu pondera Sphaerarum in Sphaeras erunt, in aequalibus centrorum distantiis, ut Sphaerae attrahentes & attractae conjunctim, id est, ut contenta sub Sphaeris per multiplicationem producta.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 39:2)
distantiis inaequalibus, ut contenta illa applicata ad quadrata distantiarum inter centra.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 40:2)
id est ut contentum sub plano ipso EF & distantia illa PG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 49:7)
Locetur jam corpusculum p intra Sphaeram ACBD, & quoniam vis plani ef in corpusculum est ut contentum sub plano illo & distantia pg;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 53:2)
& vis contraria plani EF ut contentum sub plano illo & distantia pG;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 53:3)
composita ut differentia contentorum, hoc est, ut summa aequalium planorum ducta in semissem differentiae distantiarum, id est, ut summa illa ducta in pS, distantiam corpusculi a centro Sphaerae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 53:5)
aequale est contento sub PS & PS + SI + 2SD, hoc est, sub PS & 2LS + 2SD, id est, sub PS & 2LD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 78:12)
Sit P corpus in centro Sphaerae, & RBSD segmentum ejus plano RDS & superficie Sphaerica RBS contentum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 107:1)

SEARCH

MENU NAVIGATION