라틴어 문장 검색

Unde prodeunt aequationes A + B + C = 0,004135:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 80:8)
Quae aequationes per reductiones superius expositas dant, A = 0,000145, B = 0,000247 & C = 0,0009.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 88:4)
scribamus in his Casibus 1 & 8 pro velocitatibus, atque 85½ & 4280 pro resistentiis, & fiet A + C = 85½ & 8A + 64C = 4280 seu A + 8C = 535, indeque per reductionem aequationum proveniet 7C = 449½ & C = 64-3/14 & A = 21-2/7;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 98:2)
Nam corpora longe velocissima spatium a tergo relinquent vacuum, ideoque resistentia quam sentiunt in partibus praecedentibus, nullatenus minuetur per pressionem Medii in partibus posticis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 101:6)
Pressio non propagatur per Fluidum secundum lineas rectas, nisi ubi particulae Fluidi in directum jacent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 2:1)
Si jaceant particulae a, b, c, d, e in linea recta, potest quidem pressio directe propagari ab a ad e;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 4:1)
at particula e urgebit particulas oblique positas f & g oblique, & particulae illae f & g non sustinebunt pressionem illatam, nisi fulciantur a particulis ulterioribus h & k;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 4:2)
& hae non sustinebunt pressionem nisi fulciantur ab ulterioribus l & m easque premant, & sic deinceps in infinitum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 4:4)
Pressio igitur, quam primum propagatur ad particulas quae non in directum jacent, divaricare incipiet & oblique propagabitur in infinitum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 4:5)
Si pressionis a dato puncto per Fluidum propagatae pars aliqua obstaculo intercipiatur, pars reliqua quae non intercipitur divaricabit in spatia pone obstaculum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 5:2)
A puncto A propagetur pressio quaquaversum, idque si fieri potest secundum lineas rectas, & obstaculo NBCK perforato in BC, intercipiatur ea omnis, praeter partem Coniformem APQ, quae per foramen circulare BC transit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 5:4)
Planis transversis de, fg, hi distinguatur conus APQ in frusta & interea dum conus ABC, pressionem propagando, urget frustum conicum ulterius degf in superficie de, & hoc frustum urget frustum proximum fgih in superficie fg, & frustum illud urget frustum tertium, & sic deinceps in infinitum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 5:5)
& propterea pressio non minus propagabitur a lateribus df, eg in spatia NO, KL hinc inde, quam propagatur a superficie fg versus PQ. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 5:12)
Hallucinantur igitur qui credunt agitationem partium flammae ad pressionem per Medium ambiens secundum lineas rectas propagandam conducere.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 16:2)
Debebit ejusmodi pressio non ab agitatione sola partium flammae sed a totius dilatatione derivari.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 16:3)

SEARCH

MENU NAVIGATION