라틴어 문장 검색

Proinde cum haec sit ut via describenda TR, accelerationes corporis vel retardationes in Oscillationum duarum (majoris & minoris) partibus proportionalibus describendis, erunt semper ut partes illae, & propterea facient ut partes illae simul describantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 45:3)
Tempore autem aucto in progressione Arithmetica, summa velocitatis illius maximae ac velocitatis in ascensu (atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 21:2)
in Arithmetica per multiplicationem, divisionem, & extractionem radicum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 24:2)
adeo CF, CH (vel Ch) & Cf in progressione Arithmetica, & inde HF semidifferentia est ipsarum Cf & CF;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 63:7)
Si corpus resistitur partim in ratione velocitatis, partim in velocitatis ratione duplicata, & sola vi insita in Medio similari movetur, sumantur autem tempora in progressione Arithmetica:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 2:1)
Iisdem positis, dico quod si spatia descripta sumantur in progressione Arithmetica, velocitates data quadam quantitate auctae erunt in progressione Geometrica.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 9:1)
& velocitas erit ut longitudo GD, quae cum data CG componit longitudinem CD, in Progressione Geometrica decrescentem, interea dum spatium RSED augetur in Arithmetica.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 10:2)
Iisdem positis, dico quod spatium ascensu vel descensu descriptum, est ut summa vel differentia areae per quam tempus exponitur, & areae cujusdam alterius quae augetur vel diminuitur in progressione Arithmetica;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 28:1)
& area AbNK augebitur vel diminuetur in progressione Arithmetica, dum vires CK in progressione Geometrica sumuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 29:6)
) sumantur in progressione Arithmetica;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:9)
) sumantur in progressione Arithmetica;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:18)
Rursus si gravitas particularum Fluidi in omnibus distantiis eadem sit, & distantiae sint in progressione Arithmetica, densitates erunt in progressione Geometrica, uti Vir Cl.\ Edmundus Halleius invenit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:22)
Si gravitas sit ut distantia, & quadrata distantiarum sint in progressione Arithmetica, densitates erunt in progressione Geometrica.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:23)
Hac lege punctum quodvis E eundo ab E per [epsilon] ad e, & inde redeundo per [epsilon] ad E iisdem accelerationis ac retardationis gradibus, vibrationes singulas peraget cum oscillante Pendulo.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:12)
partes fluidi non prius perseverabunt in motibus suis sine acceleratione & retardatione, quàm sint eorum tempora periodica ut quadrata distantiarum à centro vorticis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 25:4)

SEARCH

MENU NAVIGATION