라틴어 문장 검색

illud quoque addentdum arbitror, quod cuncta vis multitudinis ab uno progressa termino ad infinita progressionis augmenta concrescit.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:12)
Haec est autem arithmetica.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:20)
Hoc idem in geometria vel arithmetica viedur incurrere.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:27)
Quare, quoniam prior, ut claruit, arithmeticae vis est, hinc disputationis sumamus exordium.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:45)
Rursus si ad longitudinem respicias, ubi duo termini unam medietatem habent, quod fit ex multiplicatis extremitatibus, hoc sit, si medius terminus suae capiat pluralitatis augmenta.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 2:1)
de solidis etiam, id est cybis et sphericis vel pyramidis, laterculis etiam vel tignulis et cuneis, quae omnia quidem geometricae propriae considerationis sunt, sed sicut ipsa geometriae scientia ab arithmetica velut quadam radice ac matre producta est, ita etiam eius figurarum semina in primis numeris invenimus, planum siquidem fecimus, quod omnes disciplinas haec interempta consumeret, quas minime constituta firmaret.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:5)
Sed in his quoque secundum naturalem numerum laterum augmenta succrescunt.
(보이티우스, De Arithmetica, Liber secundus, De eorum lateribus 1:1)
Exagoni autem, qui sex angulis, et eptagoni, qui vij rursus lateribus continentur, secundum hunc modum eorum laterum augmenta succrescunt.
(보이티우스, De Arithmetica, Liber secundus, De exagonis eorumque generationibus. 1:1)
Secundum talia quoque augmenta exagonorum vel eptagonorum vel octogonorum vel novem laterum figura vel x quotlibet aliorum conpetenti progressione conficitur.
(보이티우스, De Arithmetica, Liber secundus, De exagonis eorumque generationibus. 1:5)
nunc res admonet quaedam de proportionibus disputantes, quae nobis vel ad musicas speculationes vel ad astronomicas subtilitates vel ad geometricae considerationis vim vel etiam ad veterum lectionum intellegentiam prodesse possint, arithmeticam introductionem commodissime terminare.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:2)
arithmetica, geometrica, armonica.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:2)
Quid autem esset differentia terminorum superius definitum est. Hanc autem esse arithmeticam medietatem numerorum, ipsa ratio declarabit, quoniam eius proportio in numeri quantitate consistit.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:3)
Quae igitur causa est, huiusmodi terminorum habitudinem, id est arithmeticam, cunctis aliis proportionalitatibus anteponere?
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:4)
apparuit, arithmeticam vim geometrica atque musica esse antiquiorem et quod inlata non has simul inferret, sublata vero perimeret.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 2:2)
Arithmeticam medietatem vocamus, quotiens vel tribus vel quotlibet terminis positis aequalis atque eadem differentia inter omnes dispositos terminos invenitur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:1)

SEARCH

MENU NAVIGATION