라틴어 문장 검색

Unde si circuli totius circumferentia NAn dividatur in particulas aequales Aa, tempus quo Sol percurrat particulam Aa, si circulus quiesceret, erit ad tempus quo percurrit eandem particulam, si circulus una cum Nodis circa centrum T revolvatur, reciprocè ut 9,0829032 ATq.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:11)
) ut tangens DG ad circuli BED circumferentiam totam, atque angulus iste ad motum medium Nodorum addatur;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 17:16)
hoc est ut circumferentia QAqa ducta in AZ × TZ × Pp ÷ PG ad 2MP × AT quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 25:6)
hoc est ut diameter ducta in Pp ÷ PG, ad circumferentiam;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 27:10)
Quoniam vis Lunae ad mare movendum est ad Solis vim consimilem ut 6-1/3 ad 1, & vires illae sunt ut densitates corporum Lunae & Solis & cubi diametrorum apparentium conjunctim;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 48:2)
& annuli motus iste circa axem Cylindri uniformiter continuatus, ad ejusdem motum uniformem circa diametrum propriam, eodem tempore periodico factum, ut circumferentia circuli ad duplum diametri.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 61:3)
Unde etiam si orbes ad centrum densiores sint quàm ad circumferentiam, idem erit motus aequinoctiorum Terrae totius ac prius;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 7:9)
In longitudine media tB sumatur utcunque punctum B, & inde versus Solem S ducatur linea BE, quae sit ad Sagittam tV, ut contentum sub SB & St quadrato ad cubum hypotenusae trianguli rectanguli, cujus latera sunt SB & tangens latitudinis Cometae in observatione secunda ad radium tB.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 6:2)
Tum per puncta A, B, C, duc circumferentiam circuli, eamque biseca in i, ut & chordam AC in I. Age occultam Si secantem AC in [lambda], & comple parallelogrammum iI[lambda][mu].
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 6:4)
Deinde si per G, g, [gamma] ducatur circumferentia circuli Gg[gamma] secans rectam [tau]C in Z:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 8:2)
Et si in AC, ac, [alpha][kappa] capiantur AF, af, [alpha][phi] ipsis CG, cg, [kappa][gamma] respectivè aequales, & per puncta F, f, [phi] ducatur circumferentia circuli Ff[phi] secans rectam AT in X;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 8:4)
Si vires centrifugae sint reciproce in triplicata vel quadruplicata ratione distantiarum, cubi virium comprimentium erunt ut quadrato-cubi vel cubo-cubi densitatum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 46:2)
erit densitas Lunae ad densitatem Solis ut 6-1/3 ad 1 directè & cubus diametri Solis ad cubum diametri Lunae inversè, id est (cum diametri mediocres apparentes Solis & Lunae sint 31'. 27".
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 48:3)
patet quod motus perpetuò transfertur à centro ad circumferentiam Vorticis, & per infinitatem circumferentiae absorbetur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 21:3)
Fingatur quod cubus vis comprimentis sit ut quadrato-cubus densitatis, & si gravitas est reciproce ut quadratum distantiae, densitas erit reciproce in sesquiplicata ratione distantiae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:28)

SEARCH

MENU NAVIGATION