라틴어 문장 검색

Unde talis emergit Problematis constructio.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 90:3)
Nam attractionem in accessu attracti corpusculi ad hujusmodi Sphaeram trahentem augeri in infinitum, constat per solutionem Problematis XLI.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 6:1)
Solvetur Problema quaerendo (per Prop.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 53:2)
Problema per primos seriei terminos expedite solvetur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 67:4)
Unde obiter patet usus non contemnendus harum Serierum in solutione Problematum, quae pendent a Tangentibus & curvatura Curvarum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 70:15)
Terminum quintum & sequentes hic negligo, ut infinite minores quam qui in hoc Problemate considerandi veniant. Itaq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 71:10)
Deducendo igitur Problema unumquodq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 71:14)
deinde etiam ponendo resistentiam Medii in loco quovis G esse ad Gravitatem ut S[sqrt]{1 + QQ} ad 2RR, & velocitatem esse illam ipsam quacum corpus, de loco C secundum rectam CF egrediens, in Parabola, diametrum CB & latus rectum {1 + QQ} ÷ R habente, deinceps moveri posset, solvetur Problema.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 71:16)
Sic in Problemate jam solvendo, si scribantur [sqrt]1 + aa ÷ ee seu n ÷ e pro [sqrt]{1 + QQ}, nn ÷ 2e^3 pro R, & ann ÷ 2e^3 pro S, prodibit Medii densitas ut a ÷ ne, hoc est (ob datam n) ut a ÷ e seu OB ÷ BC, id est ut Tangentis longitudo illa CT, quae ad semidiametrum OL ipsi AK normaliter insistentem terminatur, & resistentia erit ad gravitatem ut a ad n, id est ut OB ad circuli semidiametrum OK, velocitas autem erit ut [sqrt]2BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 72:1)
Methodum vero tractandi haec Problemata aperui in hujus Propositione decima, & Lemmate secundo;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 30:1)
adeoque eandem velocitatis partem amittendo, duplo longius progredietur quam pro constructione Problematis hujus superius allata.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 40:4)
resistentia pariter, inter limites in constructione Problematis & Corollario superiore positos, mediocrem rationem tenebit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 41:3)
Estque haec altitudo illa ipsa quam in constructione superioris Problematis nominavimus A. Circuli radio 29042 pedum descripti circumferentia est pedum 182476.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 56:14)
Problema confit per Prop.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 22:1)
Ad hujus Problematis solutionem requiritur computatio multiplex, quae facilius exemplis quàm praeceptis addiscitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 32:1)

SEARCH

MENU NAVIGATION