라틴어 문장 검색

) sit reciproce ut quadratum distantiae attracti corporis a centro Sphaerae, haud sensibiliter augebitur ex contactu; atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 3:4)
adhuc minus augebitur ex contactu, si attractio in recessu corporis attracti decrescat in ratione minore.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 3:5)
vel in ipso contactu nullae sunt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 3:10)
Sphaericis partes quaelibet a loco contactus remotae auferantur, & partes novae ubivis addantur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 3:12)
attractio longe fortior erit in contactu, quam cum attrahens & attractum intervallo vel minimo separantur ab invicem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 5:2)
Sed & addendo vel auferendo his Sphaeris & Orbibus ubivis extra locum contactus materiam quamlibet attractivam, eo ut corpora attractiva induant figuram quamvis assignatam, constabit Propositio de corporibus universis. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 6:4)
determinat angulum contactus FCG, seu curvaturam quam curva linea habet in C. Si lineola illa FG finitae est magnitudinis, designabitur per terminum tertium una cum subsequentibus in infinitum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 70:10)
Nam partes sphaericae contiguae se mutuo premunt aequaliter in puncto contactus, per motus Legem III.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 8:3)
Concipe etiam systemata comprimi, ita ut partes eorum se mutuo contingant, nisi quatenus vires illae contactum impediunt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 20:2)
Unde obiter cum angulus CSB semper sit acutus, consequens est, quod si solidum ADBE convolutione figurae Ellipticae vel Ovalis ADBE circa axem AB facta generetur, & tangatur figura generans a rectis tribus FG, GH, HI in punctis F, B & I, ea lege ut GH sit perpendicularis ad axem in puncto contactus B, & FG, HI cum eadem GH contineant angulos FGB, BHI graduum 135:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 32:1)
debebit causa aliqua adesse qua particulae singulae in circulis suis retineantur, ne materia quae ad Eclipticam est recedat semper à centro & per exteriora Vorticis migret ad polos, indeque per axem ad Eclipticam circulatione perpetua revertatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 18:6)
Si globus in fluido quiescente similari & infinito circa axem positione datum uniformi cum motu revolvatur, communicabitur motus fluido in morem Vorticis, & motus iste paulatim propagabitur in infinitum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 20:2)
Quoniam Vorticis partes interiores ob majorem suam velocitatem atterunt & urgent exteriores, motumque ipsis ea actione perpetuò communicant, & exteriores illi eandem motus quantitatem in alios adhuc exteriores simul transferunt, eaque actione servant quantitatem motus sui planè invariatam;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 21:2)
patet quod motus perpetuò transfertur à centro ad circumferentiam Vorticis, & per infinitatem circumferentiae absorbetur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 21:3)
Materia inter sphaericas duas quasvis superficies Vortici concentricas nunquam accelerabitur, eò quod motum omnem à materia interiore acceptum transfert semper in exteriorem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 21:4)

SEARCH

MENU NAVIGATION