라틴어 문장 검색

Si vero a duobus paribus omnibus dispositis terminis illi, qui a quinario numero inchoantes quinario numero rursus sese transsiliunt, comparentur, omnes duplices sesqualteros creant, ut est subiecta descriptio,
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 5:1)
Si vero a tribus inchoent dispositiones et tribus sese transsiliant, et ad eos aptentur, qui a septenario inchoantes septenario sese numero transgrediuntur, omnes duplices sesquitertii habita diligenter comparatione nascuntur, ut subiecta descriptio monet.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 8:1)
Horum autem eorumque qui sequuntur exempla integre planeque possumus pernotare, si in priorem descriptionem, quam fecimus, cum de superparticulari et multiplici loqueremur, ubi ab uno usque in denariam multiplicationem summa concrevit, diligens velimus acumen intendere.
(보이티우스, De Arithmetica, Liber primus, De eorum exemplis in superiori formula inveniendis. 1:1)
Multiplex vero superparticularis ostenditur, cum ad secundum versum omnes, qui sunt quinti versus serie comparantur, vel qui sunt in septimo, vel qui sunt in nono, atque ita si in infinitum sit ista descriptio, in infinitum huius proportionis species procreabuntur.
(보이티우스, De Arithmetica, Liber primus, De eorum exemplis in superiori formula inveniendis. 1:5)
Ponatur itaque primo primus aequalis, id est unus, secundus vero primo et secundo, id est ij, tertius vero primo, duobus secundis et tertio par sit, id est uni et duobus unis et uni, quod sunt iiij ut est descriptio.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 3:1)
Rursus secunda species superparticularis numeri, id est sesquitertius procreatus est. Quod si idem de quadruplo quis facere velit, sesquiquartus continuo nascetur, ut subiecta monstrat descriptio.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 25:1)
Superioris igitur descriptionis primo primus aequus numerus adscribatur, id est viiij secundus vero primo et secundo, id est xv, tertius vero primo, duobus secundis et tertio, id est xxv.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 30:1)
Restat, quemadmodum ex superparticularibus et superpartientibus multiplices superparticulares vel multiplices superpartientes nascantur ostendere, quorum binas tantum faciam descriptiones.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 41:1)
si vero sesquitertium non conversum ponamus duplex sesquitertius invenitur, ut subiecta descriptio docet:
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 46:2)
At vero si supertripartientem ponam, duplex sine dubio supertripartiens invenitur, ut in subiecta descriptione perspicuum est.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 54:2)
Et triplicis quidem haec est descriptio.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 9:9)
At quadrupli secundum hanc formam descriptio est, ad quam scilicet, qui a prioribus instructus accesserit, nulla ratione trepidabit.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 16:1)
Quadratum enim ita ductae lineae in quattuor, pentagonum in quinque triangulos, exagonum in sex et ceteros in suorum angulorum modo mensuraque per triangulos partiuntur, ut est subiecta descriptio:
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:5)
Est igitur primus triangulus numerus, qui in solis tribus unitatibus dissipatur secundum superficiei positionem, triangula scilicet descriptione, et post hunc quicunque aequalitatem laterum in trina laterum spatia segregant.
(보이티우스, De Arithmetica, Liber secundus, Dispositio triangulorum numerorum 2:1)
Huic vero si consequentem quaternarium superposuero, denarius explicatur, qui est tertius actu triangulus, quos per latera disponens ad superioris descriptionis exemplar cunctos triangulos numeros sine ullius dubitationis erroribus pernotabis.
(보이티우스, De Arithmetica, Liber secundus, De generatione triangulorum numerorum 3:5)

SEARCH

MENU NAVIGATION