-
In sequentibus autem casibus non multum ab Ellipsibus errabitur.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 39:4)
-
minora autem revolventur circa hoc maximum in Ellipsibus, atq;
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 40:9)
-
adeo donec orbes cum Ellipsibus quadrent, & areae respondeant temporibus, absq;
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 40:14)
-
Unde si Systematis hujus partes in Ellipsibus vel Circulis sine perturbatione insigni moveantur, manifestum est, quod eaedem a viribus acceleratricibus ad alia corpora tendentibus, aut non urgentur nisi levissime, aut urgentur aequaliter & secundum lineas parallelas quamproxime.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 45:2)
-
) vis qua Ellipsis circa umbilicum S describitur tendere debeat ad umbilicum illum, & esse quadrato distantiae PS reciproce proportionalis;
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 50:19)
-
Si corpus aliquod vi reciproce proportionali quadrato distantiae suae a centro, revolveretur circa hoc centrum in Ellipsi, & mox, in descensu ab Apside summa seu Auge ad Apsidem imam, vis illa per accessum perpetuum vis novae augeretur in ratione plusquam duplicata distantiae diminutae:
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 61:2)
-
describerent corpus Q ex una parte, & commune centrum aliorum duorum ex altera parte, circa commune omnium centrum quiescens, Ellipses accuratas.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 81:6)
-
In Systemate corporum, quorum vires decrescunt in ratione duplicata distantiarum, si minora circa maximum in Ellipsibus umbilicum communem in maximi illius centro habentibus quam fieri potest accuratissimis revolvantur, & radiis ad maximum illud ductis describant areas temporibus quam maxime proportionales:
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 88:2)
-
& propterea si corpus illud attrahens vel quiescat, vel progrediatur uniformiter in directum, corpus attractum movebitur in Ellipsi centrum habente in attrahentis centro gravitatis.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 17:3)
-
si corporum trahentium commune gravitatis centrum vel quiescit, vel progreditur uniformiter in linea recta, corpus attractum movebitur in Ellipsi, centrum habente in communi illo trahentium centro gravitatis.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 21:4)
-
Si resistentia sit ut velocitas, Figura aBKkT Ellipsis erit quam proxime.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:1)
-
adeoque figura BKVTa Ellipsis, quam proxime.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:6)
-
& Ellipsis, centro O, semiaxibus OB, OV descripta, figuram aBKVT, eique aequale rectangulum Aa × BO, aequabit quam proxime.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:8)
-
Nam cum Ellipsis vel Parabola congruat cum figura BKVTa in puncto medio V, haec si ad partem alterutram BKV vel VTa excedit figuram illam, deficiet ab eadem ad partem alteram, & sic eidem aequabitur quam proxime.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 47:2)
-
Nam Planetae secundum Hypothesin Copernicaeam circa Solem delati revolvuntur in Ellipsibus umbilicum habentibus in Sole, & radiis ad Solem ductis areas describunt temporibus proportionales.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 40:2)