라틴어 문장 검색

Et quoniam vis qua lineola LM generatur, si tota simul & semel in loco P impressa esset, efficeret ut Luna moveretur in arcu, cujus Chorda esset LP, atque adeò transferret Lunam de plano MPmT in planum LPlT;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 51:7)
Si anguli illi, Nodis in Quadraturis & Luna in Syzygia existentibus, recti sint, lineola ml abibit in infinitum, & angulus mTl evadet angulo mPl aequalis.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 52:1)
Haec ita se habent, ex Hypothesi quod Nodus horis singulis in locum priorem retrahitur, sic ut Sol anno toto completo ad Nodum eundem redeat à quo sub initio digressus fuerat.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:1)
Haec ita se habent ex Hypothesi quod Luna in Orbe circulari uniformiter gyratur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 23:1)
Inde verò (ex Hypothesi multis experimentis confirmata, quod compresso aeris sit ut pondus Atmosphaerae incumbentis, quodque gravitas sit reciproce ut quadratum distantiae locorum à centro Terrae) computationem per Corol. Prop. XXII. Lib. II.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 48:5)
Fiat figura tkb figurae DCB similis, & per Lemma V, lineola CD erit ad lineolam kt ut arcus BD ad arcum bt:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 25:6)
nec non, per Lemma XI, lineola nascens tk ad lineolam nascentem dc ut bt quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 25:7)
& ex aequo lineola nascens DC ad lineolam nascentem dc ut BD × bt ad bd quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 25:9)
Est autem tempus quo corpus cadendo describit lineolam DE, ut lineola illa directe & velocitas V inverse, estq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 42:6)
Tempus autem, quo corpus describit lineolam Tt, est ut lineolae hujus longitudo (id est ut secans anguli tTC) directe, & velocitas inverse.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 51:8)
lineola HF vi resistentiae, & lineola FG vi gravitatis simul generantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 62:13)
& vis illa tota, hoc est pondus incumbens, qua lineola EG comprimitur, est ad pondus lineolae ut ponderis incumbentis altitudo A ad lineolae longitudinem EG;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:6)
in dimidiata ratione resistentiae) incrementum resistentiae data temporis particula factum per lineolam KL, & contemporaneum velocitatis incrementum per lineolam PQ;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 40:5)
adeoque ex aequo, vis qua lineola EG in locis suis P & S urgetur, est ad lineolae illius pondus ut HK × A ad V × EG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:7)
& lineola HF ut resistentia & quadratum temporis, hoc est ut resistentia & lineola FG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 62:16)

SEARCH

MENU NAVIGATION