라틴어 문장 검색

Nam si eum habeat totum et duas eius quartas, superparticularis necessario repperitur, nam duae quartae medietas est et fit sesqualtera comparatio;
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 1:5)
At vero novenarius ad quaternarium duplex sesquiquartus;
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 2:3)
In hoc quoque propter causam superius dictam non erunt duae medietates neque duae quartae neque duae sextae, sed duae tertiae vel duae quintae vel duae septimae ad priorum similem consequentiam.
(보이티우스, De Arithmetica, Liber primus, De multiplici superpartiente. 1:2)
De tertia vero propositorum terminorum summa auferemus unum primum et duos secundos, eos, qui de medietate relicti sunt, et id quod ex tertia summa relinquitur, tertium terminum constituemus.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:12)
Ternarius vero quoniam medietatem non recipit, non est alter numerus, ad quem in ratione sesqualtera comparetur.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 2:5)
Semper enim hoc divina quadam nec humana constitutione speculationibus occurrit, ut quotienscunque ultimus numerus invenitur, qui loco duplicis ab unitate sit par, talis sit, ut in medietates dividi secarique non possit.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 2:13)
Altrinsecus enim positis senario et ternario, id est duplici et medietate, si quaternarius in medio conlocetur, ad ternarium numerum sesquitertiam continet rationem, ad senarium vero sesqualteram.
(보이티우스, De Arithmetica, Liber secundus, Quod multiplex intervallum ex quibus superparticularibus medietate posita intervallis fiat eiusque inveniendi regula. 2:3)
Et omnis triangularis figura vel tetragoni vel pentagoni vel exagoni vel cuiuslibet, qui pluribus angulis continetur, si a medietate per singulos angulos lineae producantur, tot eum dividunt trianguli, quot ipsam figuram angulos habere contigerit.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:4)
Quod si rursus relicto medio quaternario quinarium similiter adgregavero, quadratus mihi tertius, id est novenarius, procreatur.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 3:4)
Et in novenario, quoniam tribus numeris procreatur, latus ternario continetur, atque idem in aliis videre licet.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 3:10)
novenarius vero ex tribus et sex, sed utrique sunt trianguli;
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:4)
xij vero pentagonus ex novenario super se quadrato et tribus, secundo triangulo, nascitur.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:9)
At vero si senarius contra novenarium, vel hic contra xij, vel hic contra xv, vel quindecim contra x et viij, pro inveniendis differentiis comparentur, secundo se triangulo, id est ternario superabunt.
(보이티우스, De Arithmetica, Liber secundus, Pertinens ad figuratorum numerorum descriptionem speculatio. 1:3)
Igitur cybi aequalibus se spatiis porrigentis et huius formae, quam diximus, gradata distributione dispositae medietates sunt, quae neque cunctis partibus aequales sunt, neque omnibus inaequales, quos Graeci parallelepipedos vocant.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:12)
Nam cuiuscunque medietas unus est, ille inpar est, cuius vero duo, hic paritate recepta in gemina aequa disiungitur.
(보이티우스, De Arithmetica, Liber secundus, De antelongioribus numeris et de vocabulo numeri parte altera longioris 1:9)

SEARCH

MENU NAVIGATION