라틴어 문장 검색

Si quis autem quarti anguli terminum, qui xvj numeri quantitate notatus est et longitudinem latitudinemque in quadragenos determinat, velit superioribus comparare, per x litterae formam proportione conlata, quadrupli multitudinem pernotabit, hisque est ordinabilis super se progressio, ut primus primum tribus superet, ut iiij unitatem, secundus secundum senario vincat, ut viij binarium, tertius tertium novenario transeat, ut duodenarius ternarium, et sequentes summulae trium se semper adiecta quantitate transsiliant.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:5)
Et si quis subteriores aspiciat angulos, idem per omnes multiplicitatis species usque ad decuplum dispositissima ordinatione perveniet.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:6)
Si enim secundum angulum notet, cuius est initium quaternarius, eique superiacet binarius, atque ad hunc sequentem quis accommodet ordinem, sesqualtera proportio declarabitur.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:8)
habet enim quinarius totos in se tres et eorum duas partes id est duo. Si vero ad secundum ordinem speculatio referatur, supertripartiens proportio cognoscetur atque ita in sequentibus per omnes dispositos numeros omnes in infinitum species huius numeri convenientes ordinatasque respicies.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 5:2)
At vero quemadmodum singuli procreentur si in infinitum quis curet agnoscere, hic modus est. Habitudo enim superbipartientis, si utrisque terminis duplicetur, semper superbipartiens proportio procreatur.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:1)
Et hos ipsos rursus si duplicaveris, idem ordo proportionis adcrescit, idemque si infinitum facias, statum prioris habitudinis non mutabit.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:3)
Quodsi superquadripartientes quemadmodum in infinitum progrediantur, appetas addiscere, primas eorum radices in quadruplum multiplices licet, id est viiij et v et eos, qui illa multiplicatione proferentur, rursus in quadruplum, et eandem fieri proportionem inoffensa nimirum ratione repperies;
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:6)
Radices autem proportionum voco numeros in superiore dispositione descriptos, quasi quibus omnis summa supradictae comparationis innititur.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:8)
Namque in his ut in praedictis proportionibus minores numeri omnes addita sub praepositione dicuntur, quorum definitio talis reddi potest.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:3)
Itaque ex utroque nomine ficto vocabulo est speciesque eius ad illarum scilicet fiunt imaginem proportionum, ex quibus ipse numerus originem trahit.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:7)
Sin vero omnes in ordinem quadrupli disponantur, hi qui naturalis numeri quadrupli sunt, ut unitatis quadruplus, et duorum triumque et quattuor atque quinarii et ceterorum sese sequentium, et ad eos aptentur a novenario numero inchoantes semper sese novenario praecedentes, tunc duplicis sesquiquartae proportionis forma texetur.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 11:1)
Multiplex vero superparticularis ostenditur, cum ad secundum versum omnes, qui sunt quinti versus serie comparantur, vel qui sunt in septimo, vel qui sunt in nono, atque ita si in infinitum sit ista descriptio, in infinitum huius proportionis species procreabuntur.
(보이티우스, De Arithmetica, Liber primus, De eorum exemplis in superiori formula inveniendis. 1:5)
Videsne ut duplici proportione sequens ordo texatur?
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 6:1)
Hoc autem trina rursus imperatione colligitur, eaque resolvendi ars datis quibuslibet tribus terminis inaequalibus quidem sed proportionaliter constitutis, id est ut eandem medius ad primum vim proportionis obtineat, quam qui est extremus, ad medium, in qualibet inaequalitatis ratione vel in multiplicibus, vel in superparticularibus, vel in superpartientibus, vel in his, qui ex his procreantur multiplicibus superparticularibus, vel multiplicibus superpartientibus, eadem atque una ratione indubitata constabit.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:10)
Propositis enim tribus, ut dictum est, terminis aequis proportionibus ordinatis ultimum semper medio detrahamus et ipsum quidem ultimum primum terminum conlocemus, quod de medio relinquitur, secundum.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:11)

SEARCH

MENU NAVIGATION