라틴어 문장 검색

Inter quaternarium vero et senarium idem ij sunt, ad quaternarium medietas, ad senarium pars tertia iij vero, qui sequuntur, qui inter vj et viiij constituti sunt medii, sunt quidem senarii dimidium, pars vero tertia novenarii.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 8:5)
Confessae quidem et apud antiquiores notae, quaeque ad Pythagorae vel Platonis vel Aristotelis scientiam pervenerunt, hae tres medietates sunt:
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:1)
At vero posteri propter denarii numeri perfectionem, quod erat Pythagorae conplacitus, medietates alias quattuor addiderunt, ut in his proportionalitatibus denariae quantitatis corpus efficerent.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:4)
In his autem quantitatibus medietas ista versatur, inque his speculanda est, in quibus a se ipsis termini differunt.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:2)
Quid autem esset differentia terminorum superius definitum est. Hanc autem esse arithmeticam medietatem numerorum, ipsa ratio declarabit, quoniam eius proportio in numeri quantitate consistit.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:3)
Quare ordine disputatio progredietur, si ab ea primo inchoandum sit medietate, quae in numeri differentia non in proportionis speculatione versatur.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 2:3)
Arithmeticam medietatem vocamus, quotiens vel tribus vel quotlibet terminis positis aequalis atque eadem differentia inter omnes dispositos terminos invenitur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:1)
j ij iij iiij v vj vij viij viiij x. In hac enim naturalis numeri dispositione, si quis continuatim differentias terminorum curet aspicere, secundum arithmeticam medietatem aequa terminorum inter se discrepantia est;
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:3)
sin vero hic alius dux et alius comes, illic vero utrique sint alii, vocabitur disiuncta medietas.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:5)
Si igitur in tribus tantum terminis secundum continuam medietatem respexeris vel in quattuor vel in quotlibet aliis secundum disiunctam easdem semper differentias terminorum videbis, tantum solis proportionibus permutatis.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:6)
Sit continua medietas j ij iij. Hic unus a duobus et duo a tribus solis tantum singulis distant, et sunt eaedem differentiae, proportiones vero aliae.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:8)
Ut si ponantur j ij iij, unus et iij quattuor reddunt, duo vero, qui medius inter utrosque est, quaternarii medietas invenitur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:2)
Quod si bis medietatem ducas, aequus erit extremitatibus.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:3)
Sin vero disiuncta sit, quod fit ex utrisque extremitatibus compositis, hoc ex duabus medietatibus redditur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:5)
Illud quoque subtilius, quod multi huius disciplinae periti nisi Nicomachus nunquam antea perspexerunt, quod in omni dispositione vel continua vel disiuncta, quod continetur sub duabus extremitatibus minus est eo numero, qui ex medietate conficitur, tantum, quantum possunt duae sub se differentiae continere, quae inter ipsos sunt terminos constitutae.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:3)

SEARCH

MENU NAVIGATION