라틴어 문장 검색

) in ratione composita ex ratione simplici radii SP directe & ratione duplicata temporis periodici inverse:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 58:4)
adeo vel diminuto hoc Radio, tempus periodicum augeri magis, vel diminui minus quam in Radii hujus ratione sesquiplicata, per Corol. 6. Prop. IV.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 58:9)
Ergo si actio corporis longinqui Q, qua vis illa diminuitur, augeatur ac diminuatur per vices, augebitur simul ac diminuetur Radius SP per vices, & tempus periodicum augebitur ac diminuetur in ratione composita ex ratione sesquiplicata Radii & ratione dimidiata qua vis illa centripeta corporis centralis S per incrementum vel decrementum actionis corporis longinqui Q diminuitur vel augetur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 58:12)
Cum autem linea LM nunc major si nunc minor quam radius PS, Exponatur vis mediocris LM per radium illum PS, & erit haec ad vim mediocrem QK vel QN (quam exponere licet per QS) ut longitudo PS ad longitudinem QS.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 69:2)
erit superficiei pars annularis, convolutione arcus rE genita, ut lineola Dd, manente Sphaerae radio PE, (uti demonstravit Archimedes in Lib.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 67:2)
hoc est, ut lineola Dd, vel quod perinde est, ut rectangulum sub dato Sphaerae radio PE & lineola illa Dd:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 67:6)
× PS} ÷ {PE × V}, quae secundum Corollarium quartum Propositionis praecedentis est ut longitudo ordinatim applicatae DN, resolvet sese in tres partes
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 78:32)
tres illae partes evadent ordinatim applicatae linearum totidem curvarum, quarum areae per Methodos vulgatas innotescunt. Q. E. F.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 81:2)
Stantibus jam ante constructis, & existente corpore in loco quovis P, ordinatim applicata DN inventa fuit ut {DEq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 103:1)
& area curvilinea BDLIB, quam ordinatim applicata FN in longitudinem DB per motum continuum ducta describit, erit ut vis tota qua segmentum totum RBSD trahit corpus P. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 107:7)
annulus autem iste est ut rectangulum sub radio AE & latitudine Ee, & hoc rectangulum (ob proportionales PE & AE, Ee & cE) aequatur rectangulo PE × cE seu PE × Ff;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 26:3)
Nam ordinatim applicata FK (per Corol. 1. Prop. XC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 34:4)
Sit NKRM Sectio Conica cujus ordinatim applicata ER, ipsi PE perpendicularis, aequetur semper longitudini PD, quae ducitur ad punctum illud D, in quo applicata ista Sphaeroidem secat.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 36:3)
Operationes autem contrahi solent resolvendo ordinatim applicatas in series convergentes.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 54:1)
Ut si ad basem A in angulo quovis dato ordinatim applicetur longitudo B, quae sit ut basis dignitas quaelibet A^{m÷n};
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 54:2)

SEARCH

MENU NAVIGATION