라틴어 문장 검색

erunt (ex aequo) areae totae ABFD, PQRD ad invicem ut semisses totarum velocitatum, & propterea (ob aequalitatem velocitatum) aequantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 44:12)
composita ut differentia contentorum, hoc est, ut summa aequalium planorum ducta in semissem differentiae distantiarum, id est, ut summa illa ducta in pS, distantiam corpusculi a centro Sphaerae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 53:5)
Hinc si AB aequetur quartae parti ipsius AC, spatium ABRP, quod corpus tempore quovis ATD cadendo describit, erit ad spatium quod corpus semisse velocitatis maximae AC, eodem tempore uniformiter progrediendo describere potest, ut area ABRP, qua spatium cadendo descriptum exponitur, ad aream ATD qua tempus exponitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 52:2)
datur & spatium quod semisse velocitatis illius dato tempore describi potest, & tempus quo corpus velocitatem illam in spatio non resistente cadendo posset acquirere.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 57:7)
constructa & demonstrata sunt, erit vis qua corpus oscillans urgetur in loco quovis D, ad uim resistentia ut arcus CD ad arcum CO, qui semissis est differentiae illius Aa. Ideoque vis qua corpus oscillans urgetur in Cycloidis principio seu puncto altissimo, id est vis gravitatis, erit ad resistentiam ut arcus Cycloidis inter punctum illud supremum & punctum infimum C ad arcum CO;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 26:3)
) arcus oscillatione integra descriptus, sitque C infimum Cycloidis punctum, & CZ semissis arcus Cycloidis totius, longitudini Penduli aequalis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 30:2)
& notum est quod Parabolois sit semissis cylindri circumscripti.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:16)
construatur autem Pendulum cujus longitudo inter punctum suspensionis & centrum oscillationis aequetur semissi longitudinis aquae in Canali:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 18:2)
Quinetiam accuratioribus postea Observationibus definivi quod longitudo penduli major esse deberet quàm digitorum quinque cum semisse, & minor quàm digitorum octo;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 56:31)
In data quavis Nodorum positione, motus horarius mediocris est semissis motus horarii in Syzygiis Lunae, ideoque est ad 16". 35"'.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 55:2)
& propterea motus mediocris quocum, si uniformiter continuaretur, spatium à se inaequabili cum motu revera confectum describere possent, est semissis motus quem habent in Syzygiis Lunae.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 55:16)
& propterea differentia inter momentum in loco quocunque & momentum mediocre in Octantibus, est ut differentia inter quadratum Sinus distantiae Lunae à Quadraturis & quadratum Sinus graduum 45, seu semissem quadrati Radii;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 7:7)
Producatur DC ad A, ut sit AB ad AC ut motus medius ad semissem motus veri mediocris, ubi Nodi sunt in Quadraturis:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 17:6)
& si capiatur angulus BCE vel BCF aequalis semissi distantiae Solis à loco Nodi, per motum medium invento;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 17:13)
Et propterea eo cum pondere quod habet in Solem in altitudine SP, cadendo de altitudine illa in Solem, describeret eodem tempore (per Scholium Prop. IV. Lib. I.) spatium aequale quadrato semissis chordae illius applicato ad quadruplum altitudinis SP, id est spatium AIq.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 55:2)

SEARCH

MENU NAVIGATION