라틴어 문장 검색

Et doctus volucres augur servare sinistras:
(마르쿠스 안나이우스 루카누스, 파르살리아, 1권 6:41)
aut sicut quidam tradunt furor impius intus non in aede Iani, sed in alia in foro Augusti introeuntibus ad sinistram, fuit bellum pictum et furor sedens super arma devinctus eo habitu quo poeta dixit.
(마우루스 세르비우스 호노라투스, Commentary on the Aeneid of Vergil, SERVII GRAMMATICI IN VERGILII AENEIDOS LIBRVM PRIMVM COMMENTARIVS., commline 2946)
paulatim de trunco arboris humanam figuram fecit, ut et sinistram illi det et collum:
(마우루스 세르비우스 호노라투스, Commentary on the Aeneid of Vergil, SERVII GRAMMATICI IN VERGILII AENEIDOS LIBRVM UNDECIMVM COMMENTARIVS., commline 115)
Et si per B & A ducantur plures rectae BE, BD, AF, AG, secantes tangentem AD & ipsius parallelam BF, ratio ultima abscissarum omnium AD, AE, BF, BG, chordaeq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 31:2)
erunt semper abscissae laterum partes PR & PT ad invicem in data ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 25:3)
Et contra, si partes illae abscissae sunt ad invicem in data ratione, punctum D tanget Sectionem Conicam per puncta quatuor A, B, P, C transeuntem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 25:4)
Nulla extat figura Ovalis cujus area, rectis pro lubitu abscissa, possit per aequationes numero terminorum ac dimensionum finitas generaliter inveniri.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 9:1)
Nequit ergo intersectio rectae & spiralis per aequationem finitam generaliter inveniri, & idcirco nulla extat Ovalis cujus area, rectis imperatis abscissa, possit per talem aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:25)
Eodem argumento, si intervallum poli & puncti, quo spiralis describitur, capiatur Ovalis perimetro abscissae proportionale, probari potest quod longitudo perimetri nequit per finitam aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 11:1)
dein juncta CR ducatur recta CP, quae aequalis sit abscissae CT, angulumq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 14:3)
& Conorum particulae Sphaeroidum superficiebus abscissae DHKF, GLIE, ob aequalitatem linearum DH, EI, erunt ad invicem ut quadrata distantiarum suarum a corpusculo P, & propterea corpusculum illud aequaliter trahent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:11)
Et hinc si curva linea definiatur per relationem inter basem seu abscissam AB & ordinatim applicatam BC;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 67:2)
ordinatim applicatae IA, VG ut quaelibet abscissarum XI, XV dignitates XI^n, XV^n;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 104:3)
Per datum punctum P ducere rectam lineam BC, cujus partes PB, PC, rectis duabus positione datis AB, AC abscissae, datam habeant rationem ad invicem.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 41:1)
tangebat Scheat sitam ad sinistram, & intervallum stellarum duarum in pede boreali Andromedae accuratè complebat, & longa erat 54 gr.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 42:29)

SEARCH

MENU NAVIGATION