라틴어 문장 검색

Sin resistentia, augendo solidum Sphaericum, augeatur in minore quam duplicata ratione diametri;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 74:2)
Caeterum Globorum, quibus usus sum in his experimentis, maximus non erat perfecte Sphaericus, & propterea in calculo hic allato minutias quasdam brevitatis gratia neglexi;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 90:1)
Si corpus quodlibet Sphaericum in Medio quocunque satis Fluido moveatur, & spectetur resistentiae pars illa sola quae est in duplicata ratione velocitatis, haec pars erit ad vim quae totum corporis motum, interea dum corpus idem longitudinem duarum ipsius semidiametrorum motu illo uniformiter continuato describat, vel tollere posset vel eundem generare, ut densitas Medii ad densitatem corporis quamproxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 103:2)
Eadem methodo qua invenimus resistentiam corporum Sphaericorum in Aqua & argento vivo, inveniri potest resistentia corporum figurarum aliarum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 108:1)
Pulsus propagari concipe per successivas condensationes & rarefactiones Medii, sic ut pulsus cujusque pars densissima Sphaericam occupet superficiem circa centrum A descriptam, & inter pulsus successivos aequalia intercedant intervalla.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 10:3)
& a corpore illo tremulo tanquam centrocommuni, secundum superficies propemodum Sphaericas & concentricas, undique propagabuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 14:12)
Hac lege punctum quodvis E eundo ab E per [epsilon] ad e, & inde redeundo per [epsilon] ad E iisdem accelerationis ac retardationis gradibus, vibrationes singulas peraget cum oscillante Pendulo.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:12)
Materia inter sphaericas duas quasvis superficies Vortici concentricas nunquam accelerabitur, eò quod motum omnem à materia interiore acceptum transfert semper in exteriorem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 21:4)
Si Fluidum similare claudatur in vase sphaerico, ac globi in centro consistentis uniformi rotatione agatur in vorticem, globus autem & vas in eandem partem circa axem eundem revolvantur, sintq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 25:2)
partes fluidi non prius perseverabunt in motibus suis sine acceleratione & retardatione, quàm sint eorum tempora periodica ut quadrata distantiarum à centro vorticis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 25:4)
Si figura vasis non sit Sphaerica, movebuntur particulae in lineis non circularibus sed conformibus eidem vasis figurae, & tempora periodica erunt ut quadrata mediocrium distantiarum à centro quamproximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 31:10)
Planetae sublato omni motu circulari diurno figuram Sphaericam, ob aequalem undique partium gravitatem, affectare deberent.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 28:1)
Acceleratio illa Lunae, in transitu ipsius à Quadratura C ad conjunctionem A, singulis temporis momentis facta, est ut ipsa vis accelerans EL, hoc est ut 3PK × SK ÷ SP.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:10)
& compositè, area tota GCKF ut summa omnium virium EL tempore toto CP impressarum in Lunam, atque adeò etiam ut velocitas hac summâ genita, id est, ut acceleratio descriptionis areae CSP, seu incrementum momenti.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:16)
Ex acceleratione autem vel retardatione vel motu retrogrado distantia Cometae in hunc modum colligitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 13:9)

SEARCH

MENU NAVIGATION