라틴어 문장 검색

Res est profecto prudentibus ridicula et satyra digna affectores istos videre, in quot formas se vertant et quali utantur arte quasi prospectiva, qua superficies appareat corpus quod profunditatem aut dimensionem solidi habeat.
(FRANCIS BACON, SERMONES FIDELES SIVE INTERIORA RERUM, XXVI. DE PRUDENTIA APPARENTE 1:6)
Quantum ad fenestras prominentes sive arctas, eas probo tanquam res commodas (urbibus sane fenestrae ad planum aedificii et minime proturbantes magis conveniunt propter uniformitatem structurae plateas versus).
(FRANCIS BACON, SERMONES FIDELES SIVE INTERIORA RERUM, XLIII. [ = English XLV] DE AEDIFICIIS 4:14)
Sicut enim novae domus architecto de universa structura curandum est, ei vero, qui inurere et pingere curat, quae apta sunt ad ornatum exquirenda sunt, ita aestimo et in nobis.
(불가타 성경, 마카베오기 하권, 2장29)
Sicut enim vinum solummodo bibere, similiter autem rursus et aquam, contrarium est, quemadmodum autem vinum aquae contemperatum iam et delectabilem gratiam perficit, huiusmodi etiam structura sermonis delectat aures eorum, quibus contingat compositionem legere. Hic autem erit finis.
(불가타 성경, 마카베오기 하권, 15장39)
Ex hoc igitur principio, id est ex unitate, prima omnium longitudo succrescit, quae a binarii numeri principio in cunctos sese numeros explicat, quoniam primum intervallum linea est. Duo vero intervalla sunt longitudo et latitudo, id est linea et superficies.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:24)
longitudo, latitudo, altitudo, id est linea, superficies atque soliditas.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:26)
Quare quicquid uno intervallo caret, illud corpus solidum non est. Nam quod duo sola intervalla retinet, illud superficies appellatur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:34)
Omnis enim superficies sola longitudine et latitudine continetur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:35)
Haec autem superficies uno tantum intervallo solidi corporis demensione superatur, quae uno rursus intervallo lineam vincit, quae longitudinis naturam retinens latitudinis expers est;
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:38)
quae linea, quod unius est intervalli sortita naturam, a superficie uno intervallo, a soliditate duobus spatiis vincitur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:39)
Quare si punctum uno quidem intervallo a linea supergreditur, idem a superficie vincitur duobus, tribus vero intervalli demensionibus a soliditate relinquitur, constat punctum ipsum sine ulla corporis magnitudine vel intervalli demensione, cum et longitudinis et latitudinis et profunditatis expers sit, omnium intervallorum esse principium et natura insecabile, quod Graeci atomon vocant, id est ita deminutum atque parvissimum, ut eius pars inveniri non possit.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:41)
Est igitur punctum primi intervalli principium, non tamen intervallum, et lineae caput, sed nondum linea, sicut linea quoque superficieiprincipium est, sed ipsa superficies non est, et secundi intervalli caput est, secundum tamen intervallum ipsa non retinet.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:42)
Idem quoque et in superficiei rationem cadit, quae et ipsa solidi corporis et triplicis intervalli naturale sortitur initium, ipsa vero nec trina intervalli demensione distenditur, nec ulla crassitudine solidatur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:43)
Superficies quoque numerorum, cum ipsa solidum corpus non sit, additi tamen latitudini solidi corporis caput est. Hoc autem planius his exemplis liquebit.
(보이티우스, De Arithmetica, Liber secundus, De numero lineari 1:2)
Plana vero superficies in numeris invenitur, quotiens a tribus inchoatione facta addita descriptionis latitudine insequentium se naturalium numerorum multitudine anguli dilatantur, ut sit primus triangulus numerus, secundus quadratus, tertius qui sub quinque angulis continetur, quem pentagonum Graeci nominant, quartus exagonus, id est qui sex angulis includitur et ceteri eodem modo singillatim per naturalem numerum angulos augeant in plana scilicet descriptione figurarum.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:1)

SEARCH

MENU NAVIGATION