라틴어 문장 검색

Superficies quoque numerorum, cum ipsa solidum corpus non sit, additi tamen latitudini solidi corporis caput est. Hoc autem planius his exemplis liquebit.
(보이티우스, De Arithmetica, Liber secundus, De numero lineari 1:2)
Plana vero superficies in numeris invenitur, quotiens a tribus inchoatione facta addita descriptionis latitudine insequentium se naturalium numerorum multitudine anguli dilatantur, ut sit primus triangulus numerus, secundus quadratus, tertius qui sub quinque angulis continetur, quem pentagonum Graeci nominant, quartus exagonus, id est qui sex angulis includitur et ceteri eodem modo singillatim per naturalem numerum angulos augeant in plana scilicet descriptione figurarum.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:1)
Hi vero idcirco a ternario numero inchoant, quod latitudinis et superficiei solus ternarius principium est. In geometria quoque idem planius invenitur.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:2)
Et omnis triangularis figura vel tetragoni vel pentagoni vel exagoni vel cuiuslibet, qui pluribus angulis continetur, si a medietate per singulos angulos lineae producantur, tot eum dividunt trianguli, quot ipsam figuram angulos habere contigerit.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:4)
Adeo haec figura princeps est latitudinis, ut ceterae omnes superficies in hanc resolvantur, ipsa vero, quoniam nullis est principiis obnoxia neque ab alia latitudine sumpsit initium, in sese ipsam solvatur.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:10)
Est igitur primus triangulus numerus, qui in solis tribus unitatibus dissipatur secundum superficiei positionem, triangula scilicet descriptione, et post hunc quicunque aequalitatem laterum in trina laterum spatia segregant.
(보이티우스, De Arithmetica, Liber secundus, Dispositio triangulorum numerorum 2:1)
Quadrati vero numeri, id est tetragoni, procreatio fiebat ex numeris, qui uno intermisso copulabantur, cum se binario superarent.
(보이티우스, De Arithmetica, Liber secundus, De exagonis eorumque generationibus. 1:3)
Nam in triangulo qui sunt numeri, quae prima superficiei figura est, uno sese tantum numeri praecedunt, qui scilicet, eorum naturam descriptionemque perficiunt;
(보이티우스, De Arithmetica, Liber secundus, De eptagonis eorumque generationibus et communis omnium figurarum inveniendae generationis regula descriptionesque figurarum 2:5)
in tetragono vero, qui secundus est, duobus sese iuncti numeri vincunt, et in pentagono tribus et in exagono iiij et in eptagono quinque, huiusque rei nullus est modus.
(보이티우스, De Arithmetica, Liber secundus, De eptagonis eorumque generationibus et communis omnium figurarum inveniendae generationis regula descriptionesque figurarum 2:6)
Omnes enim tetragoni, qui sub triangulis sunt naturali ordinatione dispositi, ex superioribus triangulis procreantur illorumque collectione quadrati figura componitur.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:2)
Quattuor enim tetragonus fit ex uno et tribus, id est ex duobus superioribus triangulis;
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:3)
Pentagonorum vero summae conficiuntur ex uno super se tetragono et altrinsecus triangulo constituto.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:7)
Nam quinarius pentagonus ex quaternario super se posito tetragono et ex uno, qui in triangulorum ordine ponitur, adgregatur.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:8)
Hi vero omnes, si ad latitudinem fuerint comparati, id est trianguli tetragonis vel tetragoni pentagonis vel pentagoni exagonis vel hi rursus eptagonis, sine aliqua dubitatione triangulis sese superabunt.
(보이티우스, De Arithmetica, Liber secundus, Pertinens ad figuratorum numerorum descriptionem speculatio. 1:1)
Nam si ternarium triangulum quaternario, vel quaternarium tetragonum quinario, vel quinarium pentagonum senario exagono, vel senarium septenario eptagono compares, primo se triangulo, id est sola transeunt unitate.
(보이티우스, De Arithmetica, Liber secundus, Pertinens ad figuratorum numerorum descriptionem speculatio. 1:2)

SEARCH

MENU NAVIGATION