라틴어 문장 검색

Licet enim haec vera sint, tamen nisi terminentur in materia et fabrica secundum veras lineas, speculativa sunt, et minus utilia.
(FRANCIS BACON, NOVUM ORGANUM, Liber Secundus 468:9)
Tertio, ii qui possunt censeri tanquam curiarum manus sinistrae, homines qui curiarum processus legitimos diverticulis et versutiis distorquent, iustitiamque in lineas obliquas et labyrinthos trahunt.
(FRANCIS BACON, SERMONES FIDELES SIVE INTERIORA RERUM, LIV. [ = English LVI] DE OFFICIO IUDICIS 6:7)
Et haut scio an in ipsius Boetii operibus corrigendis constantior esse studuerim Boetio ipso, cum variationem rerum illum amasse non solum easdem sententias eloquendi maxima varietas testetur, sed etiam quod promiscue scripsisse eum maxime et verisimile triangulus et triangulum, pyramidam et pyramidem, atomon latinis, κολουρον graecis litteris, similia.
(보이티우스, De Arithmetica, Prefationes, Praefatio Editoris 5:9)
Si enim numeros tollas, unde triangulum vel quadratum vel quicquid in geometira veratur, quae omnia numerorum denominitiva sunt?
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:28)
At vero si quadratum triangulumque ustuleris omnisque geometria consumpta sit, trest et quattuor aliorumque numerorum vocabula non perhibunt.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:29)
ipsa vero nec intervalli nec longitudinis capax, quemadmodum punctum principium quidem lineae est atque intervalli, ipsum vero nec intervallum nec linea.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:12)
Quare si punctum uno quidem intervallo a linea supergreditur, idem a superficie vincitur duobus, tribus vero intervalli demensionibus a soliditate relinquitur, constat punctum ipsum sine ulla corporis magnitudine vel intervalli demensione, cum et longitudinis et latitudinis et profunditatis expers sit, omnium intervallorum esse principium et natura insecabile, quod Graeci atomon vocant, id est ita deminutum atque parvissimum, ut eius pars inveniri non possit.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:41)
Figurae de quattor modi ut polygona varas in triangulis resolviatur
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 1:1)
Plana vero superficies in numeris invenitur, quotiens a tribus inchoatione facta addita descriptionis latitudine insequentium se naturalium numerorum multitudine anguli dilatantur, ut sit primus triangulus numerus, secundus quadratus, tertius qui sub quinque angulis continetur, quem pentagonum Graeci nominant, quartus exagonus, id est qui sex angulis includitur et ceteri eodem modo singillatim per naturalem numerum angulos augeant in plana scilicet descriptione figurarum.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:1)
At vero triangula figura, cum eam quis ita diviserit, in alias figuras non resolvitur, nisi in se ipsam.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:7)
In tria enim triangula dissipatur.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:8)
Dispositio triangulorum numerorum
(보이티우스, De Arithmetica, Liber secundus, Dispositio triangulorum numerorum 1:1)
Et huius trianguli latus est unitas.
(보이티우스, De Arithmetica, Liber secundus, De lateribus triangulorum numerorum. 1:3)
Ternarius vero, qui primus est opere et actu ipso triangulus, crescente unitate binarium numerum latus habebit.
(보이티우스, De Arithmetica, Liber secundus, De lateribus triangulorum numerorum. 1:4)
Secundi vero trianguli, qui opere atque actu secundus est, id est senarii, crescente naturali numero in lateribus ternarius invenitur;
(보이티우스, De Arithmetica, Liber secundus, De lateribus triangulorum numerorum. 1:6)

SEARCH

MENU NAVIGATION