라틴어 문장 검색

Fingamus jam Systema corporum minorum modo jam descripto circa maximum revolventium, aliudve quodvis duorum circum se mutuo revolventium corporum Systema progredi uniformiter in directum, & interea vi corporis alterius longe maximi & ad magnam distantiam siti urgeri ad latus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 41:2)
eodem periodico circa axem suum uniformiter revolvi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 71:4)
5) ut & Globi de cursa rectilineo uniformiter tracti (per Legum Corol. 6.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 71:9)
Pone Globum uniformem & perfecte circinatum in spatiis liberis primo quiescere;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 74:5)
& cum citior vel serior impulsus effectum nil mutet, manifestum est quod hi duo impulsus successive impressi eundem producent motum ac si simul impressi fuissent, hoc est eundem ac si Globus vi simplici ex utroq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 74:13)
Globus igitur homogeneus & perfectus non retinet motus plures distinctos, sed impressos omnes componit & ad unum reducit, & quatenus in se est, gyratur semper motu simplici & uniformi circa axem unicum inclinatione semper invariabili datum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 74:22)
& propterea si corpus illud attrahens vel quiescat, vel progrediatur uniformiter in directum, corpus attractum movebitur in Ellipsi centrum habente in attrahentis centro gravitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 17:3)
si corporum trahentium commune gravitatis centrum vel quiescit, vel progreditur uniformiter in linea recta, corpus attractum movebitur in Ellipsi, centrum habente in communi illo trahentium centro gravitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 21:4)
) componendo motum istum cum uniformi motu, secundum lineas eidem plano parallelas facto.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 53:5)
& primo si attractio vel impulsus ponatur uniformis, erit (ex demonstratis Galilaei) curva HI Parabola, cujus haec est proprietas, ut rectangulum sub dato latere recto & linea IM aequale sit HM quadrato;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 4:7)
Transeat jam corpus successive per spatia plura parallelis planis terminata, AabB, BbcC &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 6:2)
& agitetur vi quae sit in singulis separatim uniformis, at in diversis diversa;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 6:3)
Lucem successive propagari & spatio quasi decem minutorum primorum a Sole ad Terram venire, jam constat per Phaenomena Satellitum Jovis, Observationibus diversorum Astronomorum confirmata.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 16:2)
determinare superficiem quae corpuscula omnia de loco dato successive manantia convergere faciat ad alium locum datum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 18:3)
Nam si area illa per motum puncti D augeatur uniformiter ad modum temporis, decrescet recta DC in ratione Geometrica ad modum velocitatis, & partes rectae AC aequalibus temporibus descriptae decrescent in eadem ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 13:5)

SEARCH

MENU NAVIGATION