라틴어 문장 검색

Agatur recta PT quae tangat eandem in puncto quovis P, secetque radium SQ in T;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 2:3)
Ergo circulus qui transit per puncta O, S, P transibit etiam per punctum Q. Coeant puncta P & Q, & hic circulus in loco coitus PQ tanget Spiralem, adeoque perpendiculariter secabit rectam OP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 4:2)
Si corpus, in Medio cujus densitas est reciproce ut distantia locorum a centro, revolutionem in Curva quacunque AEB circa centrum illud fecerit, & Radium primum AS in eodem angulo secuerit in B quo prius in A, idque cum velocitate quae fuerit ad velocitatem suam primam in A reciproce in dimidiata ratione distantiarum a centro (id est ut BS ad mediam proportionalem inter AS & CS:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 16:2)
etiam ut sunt eorundem angulorum secantes ita esse tempora revolutionum omnium inter circulos eosdem duos quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 17:7)
Hisce circumstantiis pressionem nil mutari colligitur, applicando demonstrationem Theorematis hujus ad Casus singulos Fluidorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 19:4)
Hinc si detur densitas Fluidi in duobus locis, puta A & E, colligi potest ejus densitas in alio quovis loco Q. Centro S, Asymptotis rectangulis SQ, SX describatur Hyperbola secans perpendicula AH, EM, QT in a, e, q, ut & perpendicula HX, MY, TZ ad asymptoton SX demissa in h, m, & t.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 32:2)
Centro S Asymptotis SA, SX describatur Hyperbola quaevis, quae secet perpendicula AH, BI, CK, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 36:13)
Nam si corpus, in Medio non resistente, oscillatione integra describeret longitudinem BA, velocitas in loco quovis D foret ut circuli diametro AB descripti ordinatim applicata DE.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:2)
erit velocitas DK in Medio resistente ut circuli vel Ellipseos super diametro Ba descripti ordinatim applicata;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:5)
Et area illa, si maneat longitudo aB, augetur vel diminuitur in ratione ordinatim applicatarum DK;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 50:3)
Quod si figura DNFB ejusmodi sit ut, si ab ejus puncto quovis N ad axem AB demittatur perpendiculum NM, & a puncto dato G ducatur recta GR quae parallela sit rectae figuram tangenti in N, & axem productum secet in R, fuerit MN ad GR ut GR cub.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 34:1)
In CR capiatur CT longitudinis cujusvis, & erigatur perpendiculum TV abscindens aream Hyperbolicam PCTV, & sit CZ latus hujus areae applicatae ad rectam PC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 37:4)
Quare motus {2dd ÷ ee}SFV, qui fiet ducendo quantitatem aquae effluentis in velocitatem suam, hoc est motus omnis tempore effluxus illius genitus, aequabitur motui AF × V. Et si aequales illi motus applicentur ad FV;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 48:5)
consequens est quod si egrediatur oblique per canalem in latus vasis, describet in spatiis non resistentibus Parabolam cujus latus rectum est altitudo aquae in vase supra canalis orificium, & cujus diameter horizonti perpendicularis ab orificio illo ducitur, atque ordinatim applicatae parallelae sunt axi canalis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 50:2)
Designet jam AV + CV^2 resistentiam Globi in aere cum velocitate V moventis, & cum velocitas maxima, in Casu columnae, quartae sit ad velocitatem maximam in casu columnae primae ut 1 ad 8, & resistentia in Casu columnae quartae ad resistentiam in Casu columnae primae in ratione arcuum differentiae in his casibus, ad numeros oscillationum applicatae, id est ut 2/535 ad 16 ÷ 85½ seu ut 85½ ad 4280:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 98:1)

SEARCH

MENU NAVIGATION