라틴어 문장 검색

Et eodem argumento in distantiis quibusvis continue proportionalibus SA, SD, SQ densitates AH, DL, QT erunt continue proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 30:26)
Est enim ex natura Hyperbolae SA ad AH vel St, ut th ad Aa, adeoque AH × th ÷ SA aequale Aa. Et simili argumento est BI × ui ÷ SB aequalis Bb, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 36:22)
Simili argumento si particularum vires centrifugae sint reciproce in duplicata ratione distantiarum inter centra, cubi virium comprimentium erunt ut quadrato-quadrata densitatum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 46:1)
De his omnibus idem valet argumentum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 59:3)
Res manifesta est, nec indiget demonstratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 65:4)
Optarim itaque (cum demonstratio vacui ex his dependeat) ut experimenta cum Globis & pluribus & majoribus & magis accuratis tentarentur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 90:3)
in reditu, ut 1 ÷ {V + im} ad 1 ÷ V. Et eodem argumento vires Elasticae punctorum Physicorum E & G in itu, sunt ut 1 ÷ {V - HL} & 1 ÷ {V - KN} ad 1 ÷ V;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:12)
Et eodem argumento differentia virium Elasticarum punctorum Physicorum [epsilon] & [gamma], in reditu lineolae Physicae [epsilon][gamma] est ut [Omega][phi].
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 46:3)
foret tempus vibrationis unius ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione longitudinis ½PS seu PO ad longitudinem A. Sed vis Elastica qua lineola Physica EG, in locis suis extremis P, S existens, urgetur, erat (in demonstratione Propositionis superioris) ad ejus vim totam Elasticam ut HL - KN ad V, hoc est (cum punctum K jam incidat in P) ut HK ad V:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:5)
Patet hoc ex demonstratione casus primi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 17:6)
& verisimile est quod, etiamsi Demonstrationum gratia Hypothesin talem initio Sectionis hujus proposuerim ut Resistentia velocitati proportionalis esset, tamen Resistentia in minori sit ratione quàm ea velocitatis est.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 32:11)
Et eodem argumento si rarius sit, accedet ad centrum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 35:12)
De hoc argumento composueram Librum tertium methodo populari, ut à pluribus legeretur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 가설 1:5)
Certe Planeta Hugenianus, eodem argumento quo Satellites Jovis gravitant in Jovem, gravis est in Saturnum.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 17:4)
Eodem argumento Jupiter in Satellites suos omnes, Terraque in Lunam, & Sol in Planetas omnes primarios gravitabit.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 17:6)

SEARCH

MENU NAVIGATION