라틴어 문장 검색

& motu transverso acquiret distantiam a linea pC, quae sit ad distantiam quam corpus alterum acquirit a linea PC, ut est hujus motus transversus ad motum transversum alterius.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 6:10)
Fingatur quod cubus vis comprimentis sit ut quadrato-cubus densitatis, & si gravitas est reciproce ut quadratum distantiae, densitas erit reciproce in sesquiplicata ratione distantiae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:28)
Sic in principio Signi Virginis, ubi Aphelium Martis jam versatur, distantia inter orbes Martis & Veneris est ad distantiam eorundem orbium in principio Signi Piscium ut tria ad duo circiter, & propterea materia Vorticis inter Orbes illos in principio Piscium debet esse velocior quàm in principio Virginis in ratione trium ad duo.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 40:9)
Est igitur distantia Lunae à Terra in Syzygiis ad ipsius distantiam in Quadraturis (seposita scilicet excentricitatis consideratione) ut 68-11/12 ad 69-11/12, vel numeris rotundis ut 69 ad 70.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 42:13)
foret distantia centri Orbis Satellitis à Sole major vel minor quàm distantia Jovis à Sole parte 1/2600 distantiae totius, id est parte quinta distantiae Satellitis extimi à centro Jovis:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 21:29)
Et quoniam data est ratio distantiae corporis utriusvis a centro illo communi ad distantiam corporis ejusdem a corpore altero, dabitur ratio cujusvis potestatis distantiae unius ad eandem potestatem distantiae alterius;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 23:1)
Si corpus P revolvendo circa centrum S, describat lineam quamvis curvam APQ, tangat vero recta ZPR curvam illam in puncto quovis P, & ad tangentem ab alio quovis curvae Q agatur QR distantiae SP parallela, ac demittatur QT perpendicularis ad distantiam SP:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 43:1)
erit eadem vis, qua corpus idem ad commune gravitatis centrum trahitur, directe itidem vel inverse ut corporis attracti distantia a centro illo communi, vel ut eadem distantiae hujus potestas, vel deniq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 23:10)
& differentia illa, propterea quod vis KL augetur quamproxime in ratione distantiae PS, decrescit in majore quam duplicata ratione distantiae PS, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 59:7)
quadrato distantiae QC magis est proportionalis reciproce, quam quadrato distantiae QS:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 77:2)
In distantiis quibusvis attractiones sunt ut Sphaerae applicatae ad quadrata distantiarum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 24:2)
distantiis inaequalibus, ut contenta illa applicata ad quadrata distantiarum inter centra.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 40:2)
Ergo si vires attractivae particularum, augendo distantias corpusculorum attractorum, decrescant in ratione dignitatis cujusvis distantiarum:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 10:2)
Quo in casu, si gravitas est reciproce ut quadratum distantiae a centro, densitas erit reciproce ut cubus distantiae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:27)
Et si Satelles minus gravis esset in Solem in ratione illa d ad e, distantia centri Orbis Satellitis à Sole minor foret quàm distantia centri Jovis à Sole in ratione illa dimidiata.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 21:27)

SEARCH

MENU NAVIGATION