라틴어 문장 검색

Fit autem maxima, ubi area PIHR est ad aream IEF ut OR ad OQ.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 36:2)
Jungatur enim EO secans arcum Parabolicum ABC in Y, & erit area curvilinea AEY ad aream curvilineam ACY ut AE ad AC quamproximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 46:1)
Ideoque cum triangulum ASE sit ad triangulum ASC in eadem ratione, erit area tota ASEY ad aream totam ASCY ut AE ad AC quamproximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 46:2)
Sed area ASBY est ad aream ASCY ut tempus descripti arcus AB ad tempus descripti arcus totius.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 46:5)
Tempus autem, quo corpus describit lineolam Tt, est ut lineolae hujus longitudo (id est ut secans anguli tTC) directe, & velocitas inverse.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 51:8)
quae subducta de area SL × AB relinquet aream quaesitam ABNA.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 82:12)
& propterea in casu priore addita areae BRSa, in posteriore eidem subducta, relinquet aream BKTa areae BRSa aequalem quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:24)
'area' vero pro 'in area'.
(마우루스 세르비우스 호노라투스, Commentary on the Georgics of Vergil, 1권, commline 1925)
in 2AS, fiet 4/3GH × AS (= 1/6AO × PO + ½AS × PO = {AO + 3AS} ÷ 6 × PO = {4AO - 3SO} ÷ 6 × PO = areae APO - SPO) = areae APS.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 4:28)
quae subducta de area priore 2SL × AB relinquit aream SL × AB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 82:10)
lineola HF vi resistentiae, & lineola FG vi gravitatis simul generantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 62:13)
in infinitum, & rectangula illa evadent aequalia areae Hyperbolicae zthn, adeoque huic areae proportionalis est differentia Aa - Ff. Sumantur jam distantiae quaelibet, puta SA, SD, SF in Progressione Musica, & differentiae Aa - Dd, Dd - Ff erunt aequales;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 36:30)
Dein perpendiculo MN abscindatur area Hyperbolica PINM quae sit ad aream Hyperbolicam PIEQ ut arcus CZ ad arcum BC descensu descriptum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 30:4)
Ergo rectangulum Aa × ½aB seu AaO, cum sit aequale areae BRSa, erit etiam aequale areae BKTa quamproxime. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:25)
Et summa omnium horariorum motuum mediocrium ab initio, ut summa omnium arearum aYZA, id est ut area NAZ.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 11:7)

SEARCH

MENU NAVIGATION