라틴어 문장 검색

Lineae autem rectae, quae sunt in data ratione ad invicem, & aequali motu angulari circum terminos suos feruntur, figuras circum eosdem terminos (in planis quae una cum his terminis vel quiescunt vel motu quovis non angulari moventur) describunt omnino similes.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 4:4)
Proinde similes sunt figurae quae his distantiis circumactis describuntur. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 4:5)
) similis curvis ST & PQV, quas eadem corpora describunt circum commune gravitatis centrum C:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 7:6)
propterea quod, per Lemma decimum, spatia ipso motus initio descripta sunt in duplicata ratione temporum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 9:15)
Ponatur igitur velocitas corporis p esse ad velocitatem corporis P in dimidiata ratione distantiae sp ad distantiam CP, eo ut temporibus quae sint in eadem dimidiata ratione describantur arcus PQ, pq, qui sunt in ratione integra:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 9:16)
corpora describent circum se mutuo figuras easdem ac prius, & propterea figurae pqv similes & aequales. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 10:4)
Hinc corpora duo viribus distantiae suae proportionalibus se mutuo trahentia, describunt (per Prop. X.) & circum commune gravitatis centrum, & circum se mutuo, Ellipses concentricas:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 11:2)
& vice versa, si tales figurae describuntur, sunt vires distantiae proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 11:3)
Et corpora duo viribus quadrato distantiae suae reciproce proportionalibus describunt (per Prop.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 12:2)
) & circum commune gravitatis centrum, & circum se mutuo sectiones conicas umbilicos habentes in centro circum quod figurae describuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 12:4)
Et vice versa, si tales figurae describuntur, vires centripetae sunt quadrato distantiae reciproce proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 12:5)
Corpora duo quaevis circum gravitatis centrum commune gyrantia, radiis & ad centrum illud & ad se mutuo ductis, describunt areas temporibus proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 13:2)
Nam si descriptae Ellipses essent sibi invicem aequales, tempora periodica, per Theorema superius, forent in dimidiata ratione corporis S ad summam corporum S + P. Minuatur in hac ratione tempus periodicum in Ellipsi posteriore, & tempora periodica evadent aequalia, Ellipseos autem axis transversus per Theorema VII.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 19:1)
Ponantur imprimis corpora duo T & L commune habentia gravitatis centrum D. Describent haec per Corollarium primum Theorematis XXI.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 32:1)
) efficiunt ut corpora illa describant Ellipses ut prius, sed motu celeriore.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 34:10)

SEARCH

MENU NAVIGATION