라틴어 문장 검색

Igitur velocitas maxima, quam corpus cadendo potest acquirere, est ad velocitatem dato quovis tempore acquisitam, ut vis data gravitatis qua perpetuo urgetur, ad excessum vis hujus supra vim qua in fine temporis illius resistitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 20:2)
Spatium vero a corpore descriptum differentia est duorum spatiorum, quorum alterum est ut tempus sumptum ab initio descensus, & alterum ut velocitas, quae etiam ipso descensus initio aequantur inter se.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 23:2)
Posito quod vis gravitatis in Medio aliquo similari uniformis sit, ac tendat perpendiculariter ad planum Horizontis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 25:1)
A puncto P ad lineam Horizontalem DC demittatur perpendiculum PC, & secetur DC in A ut sit DA ad AC ut resistentia Medii ex motu in altitudinem sub initio orta, ad vim gravitatis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 27:2)
vel (quod perinde est) ut sit rectangulum sub DA & DP ad rectangulum sub AC & CP ut resistentia tota sub initio motus ad vim Gravitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 27:3)
Hinc si vertice D, Diametro DE deorsum producta, & latere recto quod sit ad 2DP ut resistentia tota, ipso motus initio, ad vim gravitatis, Parabola construatur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 29:2)
hoc est ut resistentia ad gravitatem. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 29:17)
Et sumendo 2DP ad latus illud rectum ut est vis Gravitatis ad vim resistentiae, datur DP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 30:5)
Dein secando DC in A, ut sit CP × AC ad DP × DA in eadem illa ratione Gravitatis ad resistentiam, dabitur punctum A. Et inde datur Curva DraF.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 30:6)
Cum autem longitudo 2DP sit ad latus rectum Parabolae ut gravitas ad resistentiam in D;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 32:2)
longitudine pro DP vel Dp, fingatur quod resistentia in D sit ad gravitatem in ratione qualibet, & exponatur ratio illa per longitudinem quamvis SM.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 34:5)
Idem fac iterum ac tertio, assumendo semper novam resistentiae ad gravitatem rationem SM, & colligendo novam differentiam MN.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 34:7)
& per puncta N, N, N agatur curva regularis NNN secans rectam SMMM in X, & erit SX vera ratio resistentiae ad gravitatem, quam invenire oportuit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 34:9)
Et inde datur etiam proportio hujus resistentiae ad vim gravitatis, aliamve quamvis datam vim centripetam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 8:2)
& componendo, ita Ca ad Cd. Ergo areae ABba, DEed, hoc est spatia descripta aequantur inter se, & velocitates primae AB, DE sunt ultimis ab, de, & propterea (dividendo) partibus etiam suis amissis AB - ab, DE - de proportionales. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 13:2)

SEARCH

MENU NAVIGATION