라틴어 문장 검색

Dico quod AF, CD, BG sunt continue proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 84:4)
angulo FbD aequalis est, & propterea punctum n incidit in punctum b.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 109:5)
ab & AB, & propterea triangula abc, ABC, quae modo similia esse probavimus, sunt etiam aequalia.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 109:12)
Est ergo figura PQRK figurae abcK aequiangula & similis, & propterea ab est ad bc ut PQ ad QR, id est ut AB ad BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 120:3)
Secetur DL in R ut sit DL ad RL in eadem illa ratione, & ob proportionales gS ad gM, AS ad AP & DS ad DL, erit ex aequo ut gS ad Lh ita AS ad BL & DS ad RL;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 124:2)
Describenda sit Trajectoria fghi, quae similis sit lineae curvae FGHI, & cujus partes fg, gh, hi illius partibus FG, GH, HI similes & proportionales, rectis AB & AD, AD & BD, BD & EC positione datis, prima primis, secunda secundis, tertia tertiis interjaceant.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 129:1)
Innotescit area illa ex tempore ipsi proportionali.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 4:3)
quae huic areae proportionalis est, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:5)
& propterea rectae cujusvis positione datae intersectio cum spirali inveniri etiam potest per aequationem finitam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:7)
& propterea eadem semper conclusio, quae igitur debet omnes intersectiones simul complecti & indifferenter exhibere.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:13)
Ergo intersectiones numero infinitae rectarum, propterea quod omnium eadem est lex & idem calculus, requirunt aequationes numero dimensionum & radicum infinitas, quibus omnes possunt simul exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:18)
exhibebit intersectiones omnes, & propterea radices habebit numero infinitas, quibus omnes exhiberi possunt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:24)
Eodem argumento, si intervallum poli & puncti, quo spiralis describitur, capiatur Ovalis perimetro abscissae proportionale, probari potest quod longitudo perimetri nequit per finitam aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 11:1)
& propterea per descriptionem Curuarum Geometrice rationalium determinari nequit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 13:2)
Aream igitur Ellipseos tempori proportionalem abscindo per Curvam Geometrice irrationalem ut sequitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 13:7)

SEARCH

MENU NAVIGATION