라틴어 문장 검색

Per puncta A, B, C, D & aliquod infinitorum punctorum P, puta p, concipe Conicam sectionem describi:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 12:1)
a punctis autem occursuum B & C ad quintum quodvis sectionis Conicae punctum D agantur rectae duae BD, CD occurrentes alteris duobus infinite productis parallelogrammi lateribus PS, PQ in T & R:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 25:2)
Sin AD & DG (vel earum alterutra) ascendebant ad duas dimensiones in aequatione prima, ascendent itidem ad & dg ad duas in aequatione secunda.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 66:13)
Si centro C & vertice principali V describatur sectio quaelibet Conica VRS, & a quovis ejus puncto R agatur Tangens RT occurrens axi infinite producto CV in puncto T;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 14:2)
Sit autem P corpus pendulum, VP filum, V punctum suspensionis, SPQR Cyclois quam Pendulum describat, P ejus punctum infimum, PQ arcus altitudini AE aequalis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 20:4)
Nam in recta MN detur punctum N, & ubi punctum mobile M incidit in immotum N, incidat punctum mobile D in immotum P. Junge CN, BN, CP, BP, & a puncto P age rectas PT, PR occurrentes ipsis BD, CD in T & R, & facientes angulum BPT aequalem angulo BNM & angulum CPR aequalem angulo CNM.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 35:1)
Et contra, si punctum D contingit sectionem Conicam transeuntem per puncta B, C, A, & ubi rectae BM, CM coincidunt cum recta BC, punctum illud D incidit in aliquod sectionis punctum A;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 36:1)
puncto a in primo casu cadente ad eandem partem lineae GK cum puncto A;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 37:7)
per eadem n, N agatur recta nN, & haec erit Locus perpetuus puncti illius mobilis M. Nam, si fieri potest, versetur punctum M in linea aliqua curva.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 36:3)
Nam si Curvae puncta quaevis duo accedunt ad invicem & coeunt in figura prima, puncta eadem translata coibunt in figura nova, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 67:4)
Si ad Sphaericae superficiei puncta singula tendant vires aequales centripetae decrescentes in duplicata ratione distantiarum a punctis:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 3:1)
Si ad Spherae cujusvis puncta singula tendant vires aequales centripetae decrescentes in duplicata ratione distantiarum a punctis, ac detur ratio diametri Spherae ad distantiam corpusculi a centro ejus;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 10:1)
Si ad sphaerae alicujus datae puncta singula tendant aequales vires centripetae decrescentes in duplicata ratione distantiarum a punctis:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 16:1)
Si ad Sphaerae datae puncta singula tendant vires aequales centripetae decrescentes in duplicata ratione distantiarum a punctis, dico quod Sphaera quaevis alia similaris attrahitur vi reciproce proportionali quadrato distantiae centrorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 27:1)
Igitur si Hyperbola sit hujus generis, & punctum K, ubi corpus projectum incidet in rectam quamvis AN per punctum A transeuntem, quaeratur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 99:6)

SEARCH

MENU NAVIGATION