라틴어 문장 검색

De hoc rectangulo subducatur rectangulum prius, & manebit excessus aB + Ab. Igitur laterum incrementis totis a & b generatur rectanguli incrementum aB + Ab. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 26:4)
Sit BSKL superficies curva, T corpus in ea revolvens, STtR Trajectoria quam corpus in eadem describit, S initium Trajectoriae, OMNK axis superficiei curvae, TN recta a corpore in axem perpendicularis, OP huic parallela & aequalis a puncto O quod in axe datur educta, AP vestigium Trajectoriae a puncto P in lineae volubilis OP plano AOP descriptum, A vestigii initium puncto S respondens, TC recta a corpore ad centrum ducta;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 55:1)
annulus autem iste est ut rectangulum sub radio AE & latitudine Ee, & hoc rectangulum (ob proportionales PE & AE, Ee & cE) aequatur rectangulo PE × cE seu PE × Ff;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 26:3)
Idem fiet si lineae quatuor ducantur in angulis quibusvis & rectangulum sub duabus ductis PQ × PR sit ad rectangulum sub aliis duabus PS × PT ut rectangulum sub sinubus angulorum S, T, in quibus duae ultimae PS, PT ducuntur, ad rectangulum sub sinubus angulorum Q, R, in quibus duae primae PQ, PR ducuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 15:5)
Nam figurae inscriptae & circumscriptae differentia est summa parallelogrammorum Kl + Lm + Mn + Do, hoc est (ob aequales omnium bases) rectangulum sub unius basi Kb & altitudinum summa Aa, id est rectangulum ABla.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 7:1)
rectangulum ductarum ad opposita duo latera PQ × PR, erit ad rectangulum ductarum ad alia duo latera opposita PS × PT in data ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 3:2)
Iisdem positis, si rectangulum ductarum ad opposita duo latera Trapezii PQ × PR sit ad rectangulum ductarum ad reliqua duo latera PS × PT in data ratione;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 10:1)
& si axibus Hh, Kk describatur Ellipsis, deinde Ellipseos hujus revolutione circa axem majorem Hh describatur Sphaerois HPKhpk;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 18:14)
& hoc rectangulum, cum sit aequale duobus circulis, duplo majus est quàm rectangulum prius.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 55:14)
ita versatio rotae catenam in axem involvendo efferet situlos in summum, qui super axem pervehuntur, cogentur inverti et infundere in castellum aquae quod extulerint.
(비트루비우스 폴리오, 건축술에 관하여, LIBER DECIMUS, 4장15)
tum angulum Z, cujus tangens sit ad Radium ut rectangulum sub umbilicorum distantia SH & semiaxium differentia AO - OD ad triplum rectangulum sub OQ semiaxe minore & AO - ¼L differentia inter semiaxem majorem & quartam partem lateris recti.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 29:6)
& propterea summa omnium rectangulorum in circulo toto ad summam totidem maximorum, ut area circuli totius ad rectangulum sub circumferentia tota & radio;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 11:9)
Motus autem Terrae totius circa axem illum, ex motibus particularum omnium compositus, erit ad motum annuli circa axem eundem, in ratione composita ex ratione materiae in Terra ad materiam in annulo, & ratione trium quadratorum ex arcu quadrantali circuli cujuscunque, ad duo quadrata ex diametro;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 60:1)
descriptae axis transversus VH eam rationem ad ipsius umbilicorum distantiam SH, quam habet Trajectoriae describendae axis transversus ad ipsius umbilicorum distantiam, & propterea ejusdem est speciei.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 18:16)
Sit sectio illa Conica ARPB & umbilicus inferior S. Et primo si Figura illa Ellipsis est, super hujus axe majore AB describatur semicirculus ADB, & per corpus decidens transeat recta DPC perpendicularis ad axem;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 4:4)

SEARCH

MENU NAVIGATION