라틴어 문장 검색

foret tempus vibrationis unius ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione longitudinis ½PS seu PO ad longitudinem A. Sed vis Elastica qua lineola Physica EG, in locis suis extremis P, S existens, urgetur, erat (in demonstratione Propositionis superioris) ad ejus vim totam Elasticam ut HL - KN ad V, hoc est (cum punctum K jam incidat in P) ut HK ad V:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:5)
Deinde per computationem, ex longitudine illa assumpta DP, inveniantur longitudines DF, Df, ac de ratione Ff ÷ DF per calculum inventa, auferatur ratio eadem per experimentum inventa, & exponatur differentia per perpendiculum MN.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 34:6)
Id quod fiet si capiatur in AZ longitudo eZ, quae sit ad longitudinem AZ ut AZq.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:26)
Distribuitur autem longitudo aedis, uti latitudo sit longitudinis dimidiae partis, ipsaque cella parte quarta longior sit, quam est latitudo, cum pariete, qui paries valvarum habuerit conlocationem.
(비트루비우스 폴리오, 건축술에 관하여, LIBER QUARTUS, 4장1)
Exponatur igitur vis illa per longitudinem CD, & vis gravitatis per longitudinem penduli;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:3)
Augeatur longitudo Nodorum Plani Trajectoriae, additis ad longitudinem illam 20' vel 30', quae dicantur P;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 42 4:2)
Ideoque contentum sub longitudine in Tangente descripta & longitudine S[mu], esset ad contentum sub longitudinibus AC & SM, ut area ASC[mu] ad triangulum ASCM, id est ut SN ad SM.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:3)
Curvas Geometrice rationales appello quarum puncta omnia per longitudines aequationibus definitas, id est, per longitudinum rationes complicatas, determinari possunt;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 13:3)
& velocitas erit ut longitudo GD, quae cum data CG componit longitudinem CD, in Progressione Geometrica decrescentem, interea dum spatium RSED augetur in Arithmetica.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 10:2)
summa virium in dato tempore erit ut velocitas illa & numerus reflexionum conjunctim, hoc est (si Polygonum detur specie) ut longitudo dato illo tempore descripta & longitudo eadem applicata ad Radium circuli, id est ut quadratum longitudinis illius applicatum ad Radium;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 36:5)
longitudinem AH vel Ah, & inde collige graphice longitudines AK, Ak, per Reg. 6.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 100:7)
construatur autem Pendulum cujus longitudo inter punctum suspensionis & centrum oscillationis aequetur semissi longitudinis aquae in Canali:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 18:2)
Aucta autem vel diminuta longitudine aquae, augetur vel diminuitur tempus reciprocationis in longitudinis ratione dimidiata.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 23:2)
Cum autem velocitas Cometae in altitudine SP sit ad velocitatem in altitudine S[mu] in dimidiata ratione SP ad S[mu] inversè, id est in ratione S[mu] ad SN, longitudo hac velocitate eodem tempore descripta, erit ad longitudinem in Tangente descriptam ut S[mu] ad SN.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:5)
Igitur AC & longitudo hac nova velocitate descripta, cum sint ad longitudinem in Tangente descriptam in eadem ratione, aequantur inter se. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:6)

SEARCH

MENU NAVIGATION