라틴어 문장 검색

Et propterea cum centrum illud gravitatis perpetuo quiescit, Sol pro vario Planetarum situ in omnes partes movebitur, sed à centro illo nunquam longe recedet.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 6:8)
erit autem in exaequata planitie centrum, ubi est littera A, gnomonis autem antemeridiana umbra, ubi est b, et a centro, ubi est A, diducto circino ad id signum umbrae, ubi est B, circumagatur linea rotundationis.
(비트루비우스 폴리오, 건축술에 관하여, LIBER PRIMUS, 6장51)
Sit ACBD Sphaera, S centrum ejus, P corpusculum attractum, PASB axis Sphaerae per centrum corpusculi transiens, EF, ef plana duo quibus Sphaera secatur, huic axi perpendicularia, & hinc inde aequaliter distantia a centro Sphaerae;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 49:2)
Hypoth. V. Planetas circumjoviales, radiis ad centrum Jovis ductis, areas describere temporibus proportionales, eorumque tempora periodica esse in ratione sesquialtera distantiarum ab ipsius centro.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 가설 10:1)
Solis igitur & Lunae in AEquatore versantium & mediocriter à Terra distantium, sunto vires S & L. Et quoniam Luna in Quadraturis, tempore verno & autumnali extra AEquatorem in declinatione graduum plus minus 23½ versatur, & Luminaris ab AEquatore declinantis vis ad mare movendum minor sit, idque (quantum sentio) in duplicata ratione Sinus complementi declinationis quam proximè, vis Lunae in Quadraturis, (cum sinus ille sit ad radium ut 91706 ad 100000) erit 841/1000 L, & summa virium in Syzygiis erit L + S, ac differentia in Quadraturis 841/1000 L - S, adeoque L + S erit ad 841/1000 L - S ut 45 ad 25 seu 9 ad 5, & inde 5L + 5S aequalis erit 7569/1000 L - 9S, & 14S aequalis 2569/1000 L, & propterea L ad S ut 14000 ad 2569 seu 5-7/15 ad 1.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 45:4)
efficacia virium MN particularum omnium L, in circuitu Terrae totius extra globum Pape consistentium, ad Terram circa ipsius centrum secundum ordinem literarum ApEP convertendam, erit ad efficaciam virium LN particularum omnium L, ad Terram circa ipsius centrum secundum ordinem contrarium earundem literarum convertendam, ut tria ad duo.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 58:5)
et ab ea regione ad extremam circinationem curvaturae parallelos linea designatur, in qua constituitur frons scaenae, per centrumque orchestrae proscaenii regioni parallelos linea describitur, et qua secat circinationis lineas dextra ac sinistra, in cornibus hemicycli centra signantur.
(비트루비우스 폴리오, 건축술에 관하여, LIBER QUINTUS, 7장2)
Est igitur gravitas in A in Sphaeram centro C radio AC descriptam, ad gravitatem in A in Terram ut 126 ad 125½, & gravitas in loco Q in Sphaeram centro C radio QC descriptam, est ad gravitatem in loco A in Sphaeram centro C radio AC descriptam, in ratione diametrorum (per Prop.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 32:12)
centra eorum P & Q. Junctis GP, PQ, cape Ga ad AB ut est GP ad PQ, & centro G, intervallo Ga describe circulum, qui secet circulum primum DGE in a.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 108:6)
Et simili argumento, vires omnium planorum in Sphaera tota, hinc inde aequaliter a centro Sphaerae distantium, sunt ut summa planorum ducta in distantiam PS, hoc est, ut Sphaera tota ducta in distantiam centri sui S a corpusculo P. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 49:12)
Sic & ubi vis in recessu a centro decrescit in majori quam triplicata ratione altitudinis, corpus de Apside discedens, perinde ut caeperit descendere vel ascendere, vel descendet ad centrum usq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 22:15)
Si corpus, in Medio cujus densitas est reciproce ut distantia locorum a centro, revolutionem in Curva quacunque AEB circa centrum illud fecerit, & Radium primum AS in eodem angulo secuerit in B quo prius in A, idque cum velocitate quae fuerit ad velocitatem suam primam in A reciproce in dimidiata ratione distantiarum a centro (id est ut BS ad mediam proportionalem inter AS & CS:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 16:2)
propterea quod, si materia ad centrum redundans, qua densitas ibi major redditur, subducatur & seorsim spectetur, gravitas in Terram reliquam uniformiter densam erit reciprocè ut distantia ponderis à centro;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 38:17)
Impedietur autem iste ad lineam IK accessus faciendo ut Systema corporum T & L ex una parte, & corpus S ex altera, justis cum velocitatibus, gyrentur circa commune gravitatis centrum C. Tali motu corpus S (eo quod summa virium motricium SD × T & SD × L, distantiae CS proportionalium, trahitur versus centrum C) describit Ellipsin circa idem C;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 34:13)
foret distantia centri Orbis Satellitis à Sole major vel minor quàm distantia Jovis à Sole parte 1/2600 distantiae totius, id est parte quinta distantiae Satellitis extimi à centro Jovis:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 21:29)

SEARCH

MENU NAVIGATION