라틴어 문장 검색

) arcus oscillatione integra descriptus, sitque C infimum Cycloidis punctum, & CZ semissis arcus Cycloidis totius, longitudini Penduli aequalis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 30:2)
Si recta aB aequalis sit Cycloidis arcui quem corpus oscillando describit, & ad singula ejus puncta D erigantur perpendicula DK, quae sint ad longitudinem Penduli ut resistentia corporis in arcus punctis correspondentibus ad vim gravitatis:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 40:1)
Exponatur enim tum Cycloidis arcus oscillatione integra descriptus, per rectam illam sibi aequalem aB, tum arcus qui describeretur in vacuo per longitudinem AB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:1)
Bisecetur AB in C, & punctum C repraesentabit infimum Cycloidis punctum, & erit CD ut vis a gravitate oriunda, qua corpus in D secundum Tangentem Cycloidis urgetur, eamque habebit rationem ad longitudinem Penduli quam habet vis in D ad vim gravitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:2)
& si in DE capiatur DK in ea ratione ad longitudinem penduli quam habet resistentia ad gravitatem, erit DK exponens resistentiae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:4)
Proinde area quam linea KR describit, priore oscillationis parte jacebit extra aream BRSa, posteriore intra eandem, idque dimensionibus hinc inde propemodum aequatis inter se;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:23)
Nam si corpus, in Medio non resistente, oscillatione integra describeret longitudinem BA, velocitas in loco quovis D foret ut circuli diametro AB descripti ordinatim applicata DE.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:2)
adeoque velocitates in singulis ipsius Ba punctis, sint quam proxime ad velocitates in punctis correspondentibus longitudinis BA, ut est Ba ad BA;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:4)
7/11Aa ad longitudinem penduli ut corporis oscillantis resistentia in O ad ejusdem gravitatem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:12)
Est igitur rectangulum sub ½Ba & Aa aequale rectangulo sub 2/3Ba & OV, adeoque OV aequalis ¾Aa, & propterea corporis oscillantis resistentia in O ad ipsius gravitatem ut ¾Aa ad longitudinem Penduli.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 46:2)
Et area illa, si maneat longitudo aB, augetur vel diminuitur in ratione ordinatim applicatarum DK;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 50:3)
hoc est in ratione resistentiae, adeoque est ut longitudo aB & resistentia conjunctim.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 50:4)
Eadem erit lex & ratio resistentiae pro velocitate, quae est differentiae illius pro longitudine arcus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 54:4)
Ideoque si, pendulo inaequales arcus successive describente, inveniri potest ratio incrementi ac decrementi resistentiae hujus pro longitudine arcus descripti, habebitur etiam ratio incrementi ac decrementi resistentiae pro velocitate majore vel minore.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 55:2)
Nam si nullis agitantur viribus, progredientur uniformiter in lineis rectis per motus Leg. I. Si viribus aliquibus se mutuo agitant, & vires illae sint ut particularum correspondentium diametri inverse & quadrata velocitatum directe;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 3:5)

SEARCH

MENU NAVIGATION