라틴어 문장 검색

vel transeat per duo puncta V, v, si dantur duae tangentes TR, tr, vel tangat circulum FG & transeat per punctum V, si datur punctum P & tangens TR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 12:7)
puncta C, p, P, B, A, transeuntem, ubi punctum M perpetuo tangit lineam rectam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 36:7)
Faciendo autem ut punctum A vel B nunc abeat in infinitum, nunc migret ad alteras partes puncti C, habebuntur figurae illae omnes quas Cartesius in Optica & Geometria ad refractiones exposuit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 21:2)
Incidit ergo punctum H in Hyperbolam Asymptotis AK, KF descriptam, cujus conjugata transit per punctum C, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 102:10)
quoniam puncta E, F, G motibus similibus successive agitantur, si PH vel PHSk sit tempus ab initio motus puncti E, erit PI vel PHSi tempus ab initio motus puncti F, & PK vel PHSh tempus ab initio motus puncti G;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:3)
Hoc modo si dentur plures tangentes TR, vel plura puncta P, devenietur semper ad lineas totidem YH, vel PH, a dictis punctis Y vel P ad umbilicum H ductas, quae vel aequantur axibus, vel datis longitudinibus SP differunt ab iisdem, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 34:3)
Isto autem in casu, longitudo arcus Cycloidis, inter planum illud & punctum describens, aequalis evadet quadruplicato sinui verso dimidii arcus Rotae inter idem planum & punctum describens;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 39:5)
Et vice versa, si rectae BD, CD concursu suo D describant Sectionem Conicam per puncta B, C, A transeuntem, & harum concursus tunc incidit in ejus punctum aliquod A, cum alterae duae BM, CM coincidunt cum linea BC, punctum M continget rectam positione datam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 34:4)
Si recta aB aequalis sit Cycloidis arcui quem corpus oscillando describit, & ad singula ejus puncta D erigantur perpendicula DK, quae sint ad longitudinem Penduli ut resistentia corporis in arcus punctis correspondentibus ad vim gravitatis:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 40:1)
Unde obiter cum angulus CSB semper sit acutus, consequens est, quod si solidum ADBE convolutione figurae Ellipticae vel Ovalis ADBE circa axem AB facta generetur, & tangatur figura generans a rectis tribus FG, GH, HI in punctis F, B & I, ea lege ut GH sit perpendicularis ad axem in puncto contactus B, & FG, HI cum eadem GH contineant angulos FGB, BHI graduum 135:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 32:1)
Jacent ergo puncta B, C, D in Conisectione circa umbilicum S ita descripta, ut rectae omnes ab umbilico S ad singula Sectionis puncta ductae, sint ad perpendicula a punctis iisdem ad rectam GK demissa in data illa ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 37:13)
E punctis datis junge tria quaevis A, B, C, & circum duo eorum B, C ceu polos, rotando angulos magnitudine datos ABC, ACB, applicentur crura BA, CA primo ad punctum D deinde ad punctum P, & notentur puncta M, N in quibus altera crura BL, CL casu utroq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 43:1)
Nam si puncta duo progrediantur uniformi cum motu in lineis rectis & distantia eorum dividatur in ratione data, punctum dividens vel quiescet vel progredietur uniformiter in linea recta, Hoc postea in Lemmate xxiii demonstratur in plano, & eadem ratione demonstrari potest in loco solido.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 27:1)
Tum ex singulis vestigii punctis P erigendo ad planum AOP perpendicula PT superficiei curvae occurrentia in T, dabuntur singula Trajectoriae puncta T. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 59:10)
Nam si punctum p incidit in rectam, qua quaevis ex punctis quatuor A, B, C, D junguntur, Conica sectio vertetur in geminas rectas, quarum una est recta illa in quam punctum p incidit, & altera recta qua alia duo ex punctis quatuor junguntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 15:2)

SEARCH

MENU NAVIGATION