- 문장 검색

라틴어 문장 검색

Nam suppetunt argumenta partim ex motibus apparentibus, qui sunt motuum verorum differentiae, partim ex viribus quae sunt motuum verorum causae & effectus.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 정의 43:4)
Eodem argumento in fine temporis ejusdem reperietur alicubi in linea CD, & idcirco in utriusq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 13:5)
Et simili argumento si fiat DB successive ut AD^4, AD^5, AD^6, AD^7, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 57:6)
Sed & eodem argumento aeque contendi posset nullam esse corporis ad certum locum pergentis velocitatem ultimam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 59:3)
Simili argumento si vis centripeta successive agat in C, D, E, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 4:10)
Et simili argumento puncta S, E, V sunt etiam in una recta;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 41:6)
Et simili argumento corpus movebitur in Ellipsi vel etiam in Hyperbola vel Parabola, vi centripeta quae sit reciproce ut cubus ordinatim applicatae ad centrum virium maxime longinquum tendentis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 56:1)
Et eodem argumento vel transibit eadem per puncta duo P, p, vel tanget rectas duas TR, tr. Q. E. F.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 8:13)
Et simili argumento probabitur esse KD ad SD in eadem ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 37:12)
Et eodem argumento probabitur quod puncta R, P & A sunt in una recta.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 61:20)
Eodem argumento, si intervallum poli & puncti, quo spiralis describitur, capiatur Ovalis perimetro abscissae proportionale, probari potest quod longitudo perimetri nequit per finitam aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 11:1)
& propterea ut area Ellipseos totius ad aream circuli totius. Q. E. D. Argumento prolixiore probari potest analogia ultima in Sectoribus evanescentibus BSP, OCF:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 22:14)
Et simili argumento si figura RPB Parabola est, & eodem vertice principali B describatur alia Parabola BED, quae semper maneat data, interea dum Parabola prior in cujus perimetro corpus P movetur, diminuto & in nihilum redacto ejus Latere recto, conveniat cum linea CB, fiet segmentum Parabolicum BDEB proportionale tempori quo corpus illud P vel C descendet ad centrum B. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 7:2)
Et eodem argumento si vis centripeta sit ut {bA^m - cA^n} ÷ A cub.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 21:12)
Eodem argumento si corpus a viribus agitatum ad centra duo vel plura in eadem quavis recta CO data tendentibus, describeret in spatio libero lineam quamcunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 56:2)

SEARCH

MENU NAVIGATION