라틴어 문장 검색

exhibebit intersectiones omnes, & propterea radices habebit numero infinitas, quibus omnes exhiberi possunt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:24)
& propterea per descriptionem Curuarum Geometrice rationalium determinari nequit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 13:2)
& propterea ut area Ellipseos totius ad aream circuli totius. Q. E. D. Argumento prolixiore probari potest analogia ultima in Sectoribus evanescentibus BSP, OCF:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 22:14)
Hae autem constructiones demonstrantur ut supra, & si Figura (vertice ulteriore B in infinitum abeunte) vertatur in Parabolam, migrant in accuratam illam constructionem Problematis XXII.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 24:5)
Haec Praxis satis expedita videtur, propterea quod angulorum perexiguorum V & X (in minutis secundis, si placet, positorum) figuras duas tresve primas invenire sufficit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 29:14)
Si figura BED Parabola est, dico quod corporis cadentis velocitas in loco quovis C aequalis est velocitati qua corpus centro B dimidio intervalli sui BC circulum uniformiter describere potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 14:1)
Nam corporis Parabolam RPB circa centrum S describentis velocitas in loco quovis S (per Corol. 7.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 16:1)
Minuatur Parabolae latitudo CP in infinitum eo, ut arcus Parabolicus PfB cum recta CB, centrum S cum vertice B, & interuallum SP cum intervallo BP coincidat, & constabit Propositio. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 16:4)
Quare est CD × Cc aequale AC × Kk, & propterea AC ad SK ut AC × Kk ad SY × Dd, indeq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 21:9)
Singulis igitur temporis particulis generantur arearum duarum particulae KSk, SDd, quae, si magnitudo earum minuatur & numerus augeatur in infinitum, rationem obtinent aequalitatis, & propterea (per Corollarium Lemmatis IV) areae totae simul genitae sunt semper aequales. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 21:11)
Quod si figura DES Parabola sit, invenietur ut supra CD × Cc esse ad SY × Dd ut TC ad ST, hoc est ut 2 ad 1, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 23:2)
Si ratio illa est numeri binarii ad unitatem, punctum A cadet ad infinitam distantiam, quo in casu Parabola uertice S, axe SC, latere quovis recto describenda est.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 31:3)
erunt (ex aequo) areae totae ABFD, PQRD ad invicem ut semisses totarum velocitatum, & propterea (ob aequalitatem velocitatum) aequantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 44:12)
Sed rectangulum IT × IK aequale est IN quadrato, hoc est, aequale DE quadrato & propterea accelerationes in transitu corporum a D & I ad E & K aequales generantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 4:20)
[sqrt]{ABFD - ZZ} ad Z ut IN ad KN, & propterea A × KN aequale Q × IN ÷ [sqrt]{ABFD - ZZ}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 10:14)

SEARCH

MENU NAVIGATION