라틴어 문장 검색

Dicetur enim, qui duplicem habuerit alium numerum et eius mediam partem, duplex sesqualter, qui vero tertiam, duplex sesquitertius, qui quartam, duplex sesquiquartus et deinceps.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:9)
Si vero ter eum totum contineat et eius mediam partem vel tertiam vel quartam, dicetur triplex sesqualter, triplex sesquitertius, triplex sesquiquartus et eodem modo in ceteris;
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:10)
Duplex sesqualter est, ut v ad duo. Habent enim v binarium numerum bis et eius mediam partem, id est j. Duplex vero sesquitertius est septenarius ad ternarium comparatus.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 2:2)
Aufer igitur ex medio minorem, id est ex triginta duobus octonarium, relinquuntur xxiiij et primum octonarium terminum pone, secundum vero, quod relictum fuerit ex medio, id est xxiiij, ut sint hi duo termini viij et xxiiij.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 3:1)
At vero xxvij medio carent.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 2:11)
At vero si fuerint medietas et duplus, inter duplicem et medium potest una medietas talis inveniri, quae ad alteram extremitatem sesqualtera sit, ad alteram sesquitertia.
(보이티우스, De Arithmetica, Liber secundus, Quod multiplex intervallum ex quibus superparticularibus medietate posita intervallis fiat eiusque inveniendi regula. 2:2)
Quod si rursus relicto medio quaternario quinarium similiter adgregavero, quadratus mihi tertius, id est novenarius, procreatur.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 3:4)
Posito enim triangulo atque descripto si per tres angulos singulae lineae recte stantes ponantur, haeque tres inclinentur, ut ad unum medium punctum vertices iungant, fit pyramis, quae, cum a triangula basi profecta sit, tribus triangulis per latera concluditur hoc modo:
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:4)
Rursus si ponantur duo tetragoni ex superius descriptis, id est primus et secundus et in unum colligantur, et medius eorum parte altera longior his multiplicetur, tetragonus fit. Namque unus et iiij, si iungantur, v faciunt.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 30:2)
Sin vero convertas et inter duos, primum et secundum, parte altera longiores secundum tetragonum ponas, qui in ordine quidem secundus est, sed actu et opere primus, ex duobus parte altera longioribus congregatis et bis multiplicato medio tetragono rursus tetragonus conficitur.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 30:5)
tum si his ducantur medii iiij, faciunt rursus viij, qui cum superioribus iuncti xvj tetragonum pandunt.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 30:7)
At vero ubi duo altrinsecus parte altera longiores unum medium tetragonum claudunt, omnes ex his qui fiunt tetragoni a paribus producuntur.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 39:8)
Inter quaternarium vero et senarium idem ij sunt, ad quaternarium medietas, ad senarium pars tertia iij vero, qui sequuntur, qui inter vj et viiij constituti sunt medii, sunt quidem senarii dimidium, pars vero tertia novenarii.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 8:5)
Ut si ponantur j ij iij, unus et iij quattuor reddunt, duo vero, qui medius inter utrosque est, quaternarii medietas invenitur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:2)
Si enim sint j ij iij iiij, unus et quattuor quinarium creant, ij et iij medii in eundem rursus quinarium surgunt.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:6)

SEARCH

MENU NAVIGATION