라틴어 문장 검색

Inter hos autem velut inter inaequales intemperantias medii temperamentum limitis sortitus est ille numerus, qui perfectus dicitur, virtutis scilicet aemulator, qui nec supervacua progressione porrigitur, nec contracta rursus deminutione remittitur, sed medietatis obtinens terminum suis aequus partibus nec crassatur abundantia, nec eget inopia, ut vj vel xxviiij.
(보이티우스, De Arithmetica, Liber primus, Alia partitio paris secundum perfectos, inperfectos et ultra quam perfectos 3:1)
Facies ergo ita. Pones j eique adgregabis ij. Tunc respicias ex hac adgregatione qui numerus factus sit. Inde iij qui scilicet primus et incompositus est;
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:1)
Sed hic primus et incompositus non est, habet enim generis alterius partem super illam, quae est a se ipsa denominata, quintam decimam scilicet unitatem.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:14)
Namque maius minore maius est et minus maiore minus est, et utraque non eisdem vocabulis, quemadmodum secundum aequalitatem dictum est, sed diversis distantibusque signata sunt, ad modum discentis scilicet vel docentis vel caedentis vel vapulantis vel quaecunque ad aliquid relata aliter denominatis contrariis comparantur.
(보이티우스, De Arithmetica, Liber primus, De relata ad aliquid quantitate. 2:2)
et haec quoque prima minoris quantitatis species est. Hic autem numerus huiusmodi est, qui in alterius comparatione productus plus quam semel maioris numerat summam, sua scilicet quantitate cum eo aequaliter inchoans aequaliterque determinans.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 1:8)
rursus si intermisero quinarium, senarium et septenarium, octonarius mihi quartus occurrit, tribus scilicet intermissis, qui binarii, id est secundi numeri quadruplus est;
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:15)
ut vero vj contra viij, in secundo scilicet sesquitertio, una facta est intermissio.
(보이티우스, De Arithmetica, Liber primus, De quodam utili ad cognitionem superparticularibus accidente. 1:5)
Si igitur duo prima latera propositae formulae, quae faciunt angulum ab uno ad x et x procedentia, respiciantur et his subteriores ordines comparentur, qui scilicet a iiij angulum incipientes in vicenos terminum ponunt, duplex, id est prima species multiplicitatis ostenditur ita, ut primus primum sola superet unitate, ut duo unum, secundus secundum binario supervadat, ut quaternarius binarium, tertius tertium tribus, ut senarius ternarium, quartus quartum quaternarii numerositate transcendat, ut viij quaternarium, et per eandem cuncti sequentiam sese minoris pluralitate praetereant.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:1)
Quam rem nobis scilicet et ipsa naturalis obiecit integritas, nihil nobis extra machinantibus, ut in ipso modulo descriptionis apparet.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:4)
Itaque ex utroque nomine ficto vocabulo est speciesque eius ad illarum scilicet fiunt imaginem proportionum, ex quibus ipse numerus originem trahit.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:7)
Converso scilicet ordine, sicut duplex, hic est quoque ordo dispositus.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 22:1)
Est enim ad ipsum quidem comparatus senarius numerus, ad senarium vero, quoniam medietatem habet, novenarius, et sunt duo sesqualteri, ad iiij scilicet vj, ad vj vero viiij;
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 2:7)
At quadrupli secundum hanc formam descriptio est, ad quam scilicet, qui a prioribus instructus accesserit, nulla ratione trepidabit.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 16:1)
Punctum igitur alio rursus intervallo a linea vincitur, ipsa scilicet, quae reliqua est, longitudine.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:40)
Plana vero superficies in numeris invenitur, quotiens a tribus inchoatione facta addita descriptionis latitudine insequentium se naturalium numerorum multitudine anguli dilatantur, ut sit primus triangulus numerus, secundus quadratus, tertius qui sub quinque angulis continetur, quem pentagonum Graeci nominant, quartus exagonus, id est qui sex angulis includitur et ceteri eodem modo singillatim per naturalem numerum angulos augeant in plana scilicet descriptione figurarum.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:1)

SEARCH

MENU NAVIGATION